Supporting Information

Highly efficient ¹⁹F heteronuclear decoupling in solid-state NMR spectroscopy using supercycled refocused-CW irradiation

Asif Equbal^a, Kristoffer Basse^a, Niels Chr. Nielsen^a

^aCenter for Insoluble Protein Structures(inSPIN), Interdisciplinary Nanoscience Center (iNANO)

and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus

C, Denmark

Details on experiments

All the experiments mentioned here were recorded on a Bruker Avance II widebore 400 MHz instrument.			
Figure2	Decoupling condition:		
	$r CW^{[0p]}$:	$\tau_A = \tau_r$, $\nu_1^{cw} = \nu_1^{\pi} = \nu_1$	
	$r CW^{[0p90p]}$:	$\tau_{A} = 1.01 \tau_{r}$, $\nu_{1}{}^{cw} = \nu_{1}{}^{\pi} = \nu_{1}$	
	$r C W^{[0p180p0m18]}$	^{30m]} : $\tau_A = 1.02\tau_r$, $\nu_1^{cw} = \nu_1^{\pi} = \nu_1$	$v_1 = 125 \text{ kHz}$
	$r C W^{[0p180m0m1]}$	^{80p]} : $\tau_{\rm A} = 0.98 \tau_{\rm r}$, $\nu_1^{cw} = \nu_1^{\pi} = \nu_1$	$v_r = 25 \text{ kHz}$
	SPINAL64:	$\tau = 4.00 \ \mu s$ (flip angle 180°), Phase: $\Theta = 10^{\circ}$, $\alpha = 5^{\circ}$, $\beta = 10^{\circ}$	
	TPPM:	$\tau = 3.75 \mu s$ (flip angle 169°), Phase: $\Theta = 20^{\circ}$	
Figure3	Decoupling condition:		
	$r CW^{[0p90p]}$:	$\tau_{\rm A} = 1.03 \tau_{\rm r}$, $\nu_1^{\ cw} = \ \nu_1^{\ \pi} = \nu_1$	$v_1 = 110 \text{ kHz}$
	SPINAL64:	$\tau = 4.30 \mu s$ (flip angle 171°), Phase: $\Theta = 10^{\circ}$, $\alpha = 5^{\circ}$, $\beta = 10^{\circ}$	$v_r = 15 \text{ kHz}$
	TPPM:	$\tau = 3.75 \mu s$ (flip angle 149°), Phase: $\Theta = 25^{\circ}$	

Fig.SI-1: Numerical simulations for a larger ¹⁹F-CSA in a ¹³CF₂ spin system.

Here, we show the numerically simulated decoupling profile of (a) $r CW^{[0p180p0m180m]}$ and (b) $r CW^{[0p90p]}$ for a CF₂ system (same parameters as in Fig.4a-b except an increased ¹⁹F-CSA of 100 ppm (~40 kHz)) as a function of τ_A/τ_r and ν_1 with $\nu_r = 15$ kHz.

Fig.SI-2: Numerical simulations for varying ¹⁹F-CSA and ¹⁹F-¹⁹F dipole coupling strength in a CF₂ spin system.

Numerically simulated normalized peak height observed for the ¹³C resonance of a CF₂ spin system as a function of ¹⁹F-CSA and ¹⁹F-¹⁹F dipole coupling strength under (a) $rCW^{[0p180m0m180p]}$, (b) TPPM, and (c) XiX irradiation with $v_1 = 125$ kHz kHz, $v_r = 15$ kHz, and a magnetic field strength of 400 MHz. While TPPM is not tolerant towards high CSA, XiX performance is hindered by homonuclear interaction.

Floquet analysis

The form of the effective dipolar Hamiltonian induced by the cross term between the *II* homonuclear dipolar coupling and the *IS* heteronuclear dipolar coupling is given by

$$H_{(II-IS)}^{(0,0)} = -\sum_{\mu,\nu,\sigma,\gamma=x,y,z} \sum_{i,j} \sum_{n,k} \frac{a_k^{\mu\nu} a_{-k}^{\sigma} \omega_{I_i I_j}^{(n)} \omega_{I_i S}^{(-n)}}{n \omega_r + k \omega_c} I_{i\gamma} I_{j\nu} S_z$$

Here, the indices *i* and *j* represent different spins of *I* and the indices μ , σ , and γ follow the Levi-Civita permutation relations.