Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Transient photocyclization in Ruthenium (II) polypyridine Complexes of indolamines

G. Carrone, L. Zayat, L. D. Slep and R. Etchenique *

```
*email:rober@qi.fcen.uba.ar
```


Figure S1. Dark decay of a sample of $[Ru(55dmb)_2(5MT)(H_2O)]^{2+}$ UV-Vis (circles, green) and NMR (squares, pink) immediately after irradiation in D₂O and after 300,520,710,940,1620,2320 and 5470 seconds. Factor analysis performed independently over the ¹H-NMR and UV-vis spectra reveal the presence of at most two "colored" species. Integration of the ¹H-NMR peaks allows establishing the relative amounts of $Ru(55dmb)_2(5MT)(H_2O)]^{2+}$ and $Ru(55dmb)_2(5MT)]^{2+}$. The molar absorbance for the colored complexes was than deconvoluted by least square fitting employing the UV-Vis data and the concentration profiles. The full line represents the best both experimental sets. UV-Vis data are depicted in Figure 3a. RMN data are depicted in Figure S2.

Figure S2. ¹H-RMN spectra of $[Ru(55dmb)_2(5MT)(H_2O)]^{2+}$ immediately after irradiation in D₂O (top) and at 300,520,710,940,1620,2320 and 5470 seconds. Initial photoconversion (x₀=0.56) into the bidentate complex $[Ru(55dmb)_2(5MT)]^{2+}$ was calculated by integration of the signals at 1.89, 3.61 and 6.77 ppm.

Figure S3. a) Experimental mass spectrum of $[Ru(55dmb)_2(5MT)(H_2O)]^{2+}$. b) simulated mass spectrum for $[Ru(55dmb)_2(5MT)]^{2+}$.

Figure S4. COSY spectrum of $[Ru(55dmb)_2(5MT)(H_2O)]^{2+}$ in D₂O.

Figure S5. NOESY spectrum of $[Ru(55dmb)_2(5MT)(H_2O)]^{2+}$ in D₂O. NOE correlation is seen between spatially close hydrogens pairs c/d and j/i, but no NOE is apparent between bpy protons and any indolic hydrogen.

Derivation of Equation 2 (see main text).

$$\frac{dB}{dt} = I_{IRR}\varphi_{A\to B}\left(1 - 10^{-Abs_T}\right)\frac{Abs_A}{Abs_T} - I_{IRR}\varphi_{B\to A}\left(1 - 10^{-Abs_T}\right)\frac{Abs_B}{Abs_T} - k[B]$$

$$\lim_{Abs\to 0} (1 - 10^{-Abs}) = 2.3Abs = 2.3\varepsilon lc$$

$$\frac{dB}{dt} = I_{IRR} \varphi_{A\to B} 2.3\varepsilon_A l[A] - I_{IRR} \varphi_{B\to A} 2.3\varepsilon_B l[B] - k[B]$$

$$\frac{dB}{dt} = I_{IRR} 2.3(\varphi_{A\to B}\varepsilon_A l[A] - \varphi_{B\to A}\varepsilon_B l[B]) - k[B]$$

In steady state

$$\begin{aligned} \frac{dB}{dt} &= 0\\ \begin{bmatrix} B \end{bmatrix} (I_{IRR} 2.3\varphi_{B \to A}\varepsilon_{B}l + k) = \begin{bmatrix} A \end{bmatrix} (I_{IRR} 2.3\varphi_{A \to B}\varepsilon_{A}l)\\ \begin{bmatrix} A \\ B \end{bmatrix} &= \frac{I_{IRR} 2.3\varphi_{B \to A}\varepsilon_{B}l}{I_{IRR} 2.3\varphi_{A \to B}\varepsilon_{A}l} + \frac{k}{I_{IRR} 2.3\varphi_{A \to B}\varepsilon_{A}l}\\ \\ \begin{bmatrix} A \\ B \end{bmatrix} &= \frac{\varphi_{B \to A}\varepsilon_{B}}{\varphi_{A \to B}\varepsilon_{A}} + \frac{k}{2.3\varphi_{A \to B}\varepsilon_{A}l}\frac{1}{I_{IRR}} \end{aligned}$$

Figure S6. Comparative computed structures for $[Ru(55dmb)_2(5MT)(H_2O)]^{2+}$ in the presence of explicit water molecules. a) no additional H₂O. b) one H₂O. c) two H₂O.

Table S1. Selected bondlengths (Å) (top) and Mayer Bond Order (bottom) for the DFT optimized structures of $[Ru(55dmb)_2(5MT)(H_2O)]^{2+}$ and $[Ru(55dmb)_2(5MT)]^{2+}$.

	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ +	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ +	Ru(Me ₂ bpy) ₂ (5MT)] ²⁺
		H ₂ O	2H ₂ O	
Ru-N ₁	2.194	2.201	2.196	2.200
Ru-N₂	2.090	2.084	2.080	2.090
Ru-N₃	2.112	2.105	2.101	2.099
Ru-N ₄	2.055	2.063	2.067	2.071
Ru-N₅	2.084	2.083	2.084	2.142
Ru-X	2.229 (X = O)	2.195 (X = O)	2.169 (X = O)	2.663 (X = C)
				2.635 (X = C)
	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ +	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ +	Ru(Me ₂ bpy) ₂ (5MT)] ²⁺
	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺	$Ru(Me_2bpy)_2(5MT)(H_2O)]^{2+} + H_2O$	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ + 2H ₂ O	$Ru(Me_2bpy)_2(5MT)]^{2+}$
Ru-N ₁	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ + H ₂ O 0.371	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ + 2H ₂ O 0.378	Ru(Me ₂ bpy) ₂ (5MT)] ²⁺
Ru-N ₁ Ru-N ₂	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ 0.381 0.456	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ + H ₂ O 0.371 0.460	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ + 2H ₂ O 0.378 0.460	Ru(Me ₂ bpy) ₂ (5MT)] ²⁺ 0.398 0.435
Ru-N₁ Ru-N₂ Ru-N₃	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ 0.381 0.456 0.386	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ + H ₂ O 0.371 0.460 0.388	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ + 2H ₂ O 0.378 0.460 0.388	Ru(Me ₂ bpy) ₂ (5MT)] ²⁺ 0.398 0.435 0.388
Ru-N1 Ru-N2 Ru-N3 Ru-N4	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ 0.381 0.456 0.386 0.542	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ + H ₂ O 0.371 0.460 0.388 0.515	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ + 2H ₂ O 0.378 0.460 0.388 0.496	Ru(Me ₂ bpy) ₂ (5MT)] ²⁺ 0.398 0.435 0.388 0.498
Ru-N1 Ru-N2 Ru-N3 Ru-N4 Ru-N5	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ 0.381 0.456 0.386 0.542 0.402	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ + H ₂ O 0.371 0.460 0.388 0.515 0.398	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ + <u>2H₂O</u> 0.378 0.460 0.388 0.496 0.392	Ru(Me ₂ bpy) ₂ (5MT)] ²⁺ 0.398 0.435 0.388 0.498 0.367
Ru-N₁ Ru-N₂ Ru-N₃ Ru-N₄ Ru-N₅ Ru-X	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ 0.381 0.456 0.386 0.542 0.402 0.286 (X = O)	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ + H ₂ O 0.371 0.460 0.388 0.515 0.398 0.333 (X = O)	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ + <u>2H₂O</u> 0.378 0.460 0.388 0.496 0.392 0.388 (X = O)	Ru(Me ₂ bpy) ₂ (5MT)] ²⁺ 0.398 0.435 0.388 0.498 0.367 0.271 (X = C)
Ru-N1 Ru-N2 Ru-N3 Ru-N4 Ru-N5 Ru-X	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ 0.381 0.456 0.386 0.542 0.402 0.286 (X = O)	Ru(Me ₂ bpy) ₂ (5MT)(H ₂ O)] ²⁺ + H ₂ O 0.371 0.460 0.388 0.515 0.398 0.333 (X = O)	$\frac{\text{Ru}(\text{Me}_2\text{bpy})_2(5\text{MT})(\text{H}_2\text{O})]^{2^+} + 2\text{H}_2\text{O}}{0.378}$ 0.378 0.460 0.388 0.496 0.392 0.388 (X = O)	Ru(Me ₂ bpy) ₂ (5MT)] ²⁺ 0.398 0.435 0.388 0.498 0.367 0.271 (X = C) 0.261 (X = C)

Figure S7. Photoconversion of $[Ru(55dmb)_2(5MT)(H_2O)]^{2+}$ into $[Ru(55dmb)_2(5MT)(H_2O)]^{2+}$ followed by UV-Vis spectrometry. T \cong 40 °C, λ_{irr} = 405 nm, I_{irr} = 80 mW.