Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Electronic Supplementary Information (ESI)

Synthesis of MnO₂ nanoparticle and its effective utilization as UV protector

for outdoor high voltage polymeric insulator used in power transmission

line

D. Ghosh, S. Bhandari, D. Khastgir*

Rubber Technology Centre, Indian Institute of Technology Kharagpur Kharagpur-721302, West Bengal, India

* Corresponding author: Dipak Khastgir
E-mail ID: khasdi@rtc.iitkgp.ernet.in
Phone: +91 - 3222 - 283192

EDX- analysis of synthesized three different nanoparticles

Fig. S1: EDX spectra (a), scan area (b) and elemental composition of synthesize $MnO_2 \delta$ -nanosheet (NS).

Fig. S2: EDX spectra (a), scan area (b) and elemental composition of synthesize $MnO_2 \alpha$ -nanowire (NW).

()) () () () () () () () () () () () ()	•				Sum Spectrum (a)
2 4 Full Scale 1845 cts	6 8 Cursor: 0.000	10	12	14 16	18 20 keV
		(b) I	Element	Weight%	Atomic%
No.		-	ок	47.41	74.78
	N. A.	I	кк	5.72	3.69
The second	1.12	7	An K	46.86	21.52
	N SY A		Cotals	100.00	

Fig. S3: EDX spectra (a), scan area (b) and elemental composition of synthesize $MnO_2 \alpha$ -nanorod (NR).

TEM analysis of α -nanorod of extended heating

Fig. S4: Digital picture (a) and TEM image (b) of α -MnO₂ nanorod of extended heating sample.

Thermogravimetric analysis

Fig S5 represents the thermogravimetric analysis of synthesized different morphological nanoparticles. It was detected from this analysis that all the particles absorbed traces of moisture (weight loss ~1-2 %) due to weight loss at 100°C. It may be due to present of surface hydroxyl group which can absorb traces of moisture. The loss weight at near about 300-400°C may be due to transformation of phase from MnO_2 to $Mn_2O_3^{53}$.

Fig. S5: TGA analysis of δ - MnO₂ nanaosheet (NS), α - MnO₂ nanowire (NW) and α - MnO₂ nanorod (NR).

Nanoindentation analysis

Fig. S6: Force versus depth profile of (a) δ -nanosheet (NS), (b) α - nanowire (NW) and (c) α -nanorod (NR) under nanoindentation at 10 different places of each type of nanomaterial.

Electrical properties of MnO₂

Effect of frequency on electrical impedance

Fig. S7: Variation of impedance of δ - MnO₂ nanaosheet (NS), α - MnO₂ nanowire (NW) and α - MnO₂ nanorod (NR) with respect to frequency at room temperature.

Effect of temperature on electrical impedance

Fig. S8: Variation of impedance of δ - MnO₂ nanaosheet (NS), α - MnO₂ nanowire (NW) and α - MnO₂ nanorod (NR) with respect to temperature at (a) 1 Hz, (b) 10³ Hz and (c) 10⁶ Hz frequency.

Fig. S9: Band gap analysis of (a) δ - MnO₂ nanaosheet (NS), (b) α - MnO₂ nanowire (NW) and (c) α - MnO₂ nanorod (NR).

Digital picture of synthesized MnO₂ nanoparticle

Fig. S10: Digital picture of synthesized δ - MnO₂ nanosheet for the preparation of high voltage insulator composite as UV retardant.