Supporting Information

In situ study of oxidation states of platinum nanoparticles on a polymer electrolyte fuel cell electrode by near ambient pressure hard X-ray photoelectron spectroscopy

Yasumasa Takagi,^{*a,b} Heng Wang,^{a‡} Yohei Uemura,^{a,b} Takahiro Nakamura,^a Liwei Yu,^a Oki Sekizawa,^c Tomoya Uruga,^{c,d} Mizuki Tada,^e Gabor Samjeskè,^c Yasuhiro Iwasawa,^c and Toshihiko Yokoyama^{a,b}

^a Department of Materials Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan.

^b SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan.

^c Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan.

^d Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan.

^e Research Center for Materials Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.

[‡]Present address: School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou Henan Province, 450001, China.

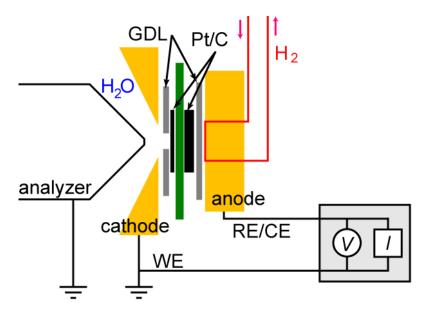


Figure S1: A potentiostatic system of the fuel cell for *in situ* NAP-HAXPES measurements at SPring-8 BL36XU.

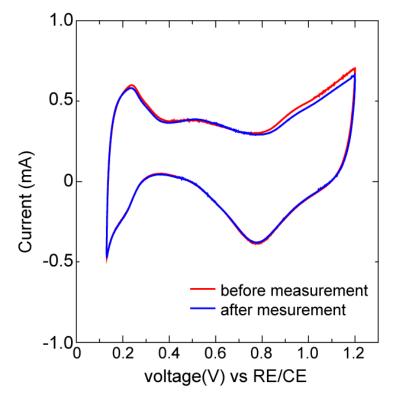


Figure S2: Cyclic voltammograms before and after the *in situ* NAP-HAXPES measurement for 4 hours under water vaper pressure of 4,000 Pa. The scan rate of the CV curves was 20 mV/s. TEC10E50E was used as the catalyst in the electrode.