Supporting information

Benzimidazolequinoxalines: Novel Fluorophores with Tuneable Sensitivity to Solvent Effects

Timur I. Burganov,^a Nataliya A. Zhukova,^a Vakhid A. Mamedov,^a Christoph Bannwarth,^b Stefan Grimme,^b and Sergey A. Katsyuba^{*a}

^a A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Centre of the Russian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russia

^b Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, 53115 Bonn, Germany

Contents:

Figure 1S. The computed geometries of the *syn*- and *anti*-conformers of 1, 4 and 6 in the ground state and in the excited state

Figure 2S. Absorption spectra of 2.

Table 1S. Structural parameters of intra- and intermolecular H-bonds or short contacts of 1, 2, 4, 6 in ground (S₀) and excited (S₁) states.

Table 2S. Experimental wavelengths of emission and the lowest-energy absorption maxima as compared with the corresponding wavelengths calculated for *syn*- and *anti*-conformers.

Table 3S. Calculated dipole moments for S_0 and S_1 states of both syn and anti conformers..

Figure 1S. The computed geometries of the *syn*- and *anti*-conformers of **1**, **4** and **6** in the ground state and in the excited state. Distances – in Å; φ - dihedral angles between the benzimidazole (B), quinoxaline (Q) and phenyl (Ph) rings.

Figure 2S. TDDFT simulated absorption spectra of *syn*- (red lines) and *anti*-conformers (blue lines) of **2** in comparison with the experimental spectrum registered for **2** solutions in DCE (black line) and DMF (green line). The heights of the vertical straight lines correspond to the calculated oscillator strengths of the corresponding vertical transitions. Red and blue envelope curves are obtained by broadening of the vertical straight lines by Gaussian functions with a full-width at 1/e height of 0.4 eV.

Compound	Confor- mer	Bond length	1:1 H-complex with DMSO ^a		isolated molecules ^b	
			State		State	
			S ₀	S_1	S ₀	S_1
	syn	NH	1.0282	1.0746	1.0072	1.0234
		ΔΝΗ	0.0211	0.0512		
		Н…О	1.7649	1.5230		
		SO	1.5292	1.5528		
		NH	1.0291	1.0845	1.0059	1.0091
	anti	ΔΝΗ	0.0232	0.0754		
1	anti	Н…О	1.7340	1.4996		
		SO	1.5303	1.5540		
		$\Delta NH_{syn-anti}$	-	-	0.0012 ^c	0.0143
	syn	NH	1.0285	1.0752	1.0072	1.0235
		ΔΝΗ	0.0213	0.0517		
		Н…О	1.7626	1.5203		
		SO	1.5293	1.5528		
		NH	1.0285	1.0850	1.0057	1.0089
	anti	ΔNH	0.0228	0.0762		
⇒ °Cl	ann	Н…О	1.7415	1.4963		
4		SO	1.5303	1.5539		
		$\Delta NH_{syn-anti}$	-	-	0.0015 ^e	0.0146
O_2N N N N Cl 6	syn	NH	1.0310	1.0849	1.0072	1.0120
		ΔNH	0.0238	0.0730		
		H···O	1.7380	1.4881		
		SO	1.5303	1.5539		
	anti	NH	1.0228	1.0871	1.0058	1.0089
		ΔNH	0.0171	0.0783		
		Н…О	1.8170	1.4832		
		SO	1.5307	1.5531		
		$\Delta NH_{syn-anti}$	-	-	0.0014 ^f	0.0031

Table 1S. Structural parameters of intra- and intermolecular H-bonds or short contacts of **1**, **4**, **6** in ground (S_0) and excited (S_1) states. All bond lengths and their changes are given in Å.

^aStrength of intermolecular H-bond N–H···O=S in 1:1 H-complex with DMSO is characterized by: i) elongation of N-H bond in the H-complex relative to isolated benzimidazolequinoxaline molecule, Δ NH; ii) H···O bond length; iii) S=O bond length. Increase in the H-bond strength results in increase of Δ NH and S=O bond length, and simultaneously in decrease of H···O bond length. ^bRelative strength of intramolecular N–H···N interaction is characterized by elongation of N-H bond of *syn*-conformer relative to *anti*-conformer, Δ NH_{*syn-anti*}. ^cRelative change of frequency of stretching vibrations Δ vNH_{*syn-anti*} = -10 cm⁻¹; the corresponding change of IR intensity Δ *I*(vNH)_{*syn-anti*} = 21 km·mol⁻¹. ^d Δ vNH_{*syn-anti*} = -14 cm⁻¹; Δ *I*(vNH)_{*syn-anti*} = 25 km·mol⁻¹. ^e Δ vNH_{*syn-anti*} = -14 cm⁻¹; Δ *I*(vNH)_{*syn-anti*} = 24 km·mol⁻¹. ^f Δ vNH_{*syn-anti*} = -13 cm⁻¹; Δ *I*(vNH)_{*syn-anti*} = 23 km·mol⁻¹.

		Experiment			Calculations	
Compound	Туре	DCE	DMF	DMSO	63.174	anti
		solution	solution	solution	syn	ann
	abs	373	367	367	368	355
	emi	440	460	470	438	448
	abs	352	352	352	367	359
	emi	446	465	470	467	473
	abs	375	370	370	373	355
	emi	444	462	468	440	450
	abs	375	371	371	373	358
	emi	446	468	470	442	454
$ \begin{array}{c} $	abs	383	383	380	382	377
	emi	473	492	501	466	483
$ \begin{array}{c} $	abs	396	391	391	412	406
	emi	519			513	551

Table 2S. Experimental wavelengths (nm) of emission (emi) and the lowest-energy absorption (abs) maxima as compared with the corresponding wavelengths calculated for *syn-* and *anti-*conformers.

Compound	conformer	Calculated dipole moments			
Compound		S ₀	S ₁		
	syn	2.80	12.04		
	anti	3.37	14.23		
	syn	3.15	14.25		
2	anti	3.73	15.18		
	syn	4.45	12.23		
3	anti	2.97	14.23		
	syn	4.80	12.51		
	anti	2.97	13.78		
	syn	2.79	14.56		
5	anti	3.17	17.81		
	syn	2.43	18.49		
6	anti	6.12	21.97		

Table 3S. Calculated dipole moments (D) for S_0 and S_1 states of both *syn* and *anti* conformers.