1 Electronic Supplementary Information

2 S1. Measurements of absorption cross-sections for H_2O_2

The procedure for the determination of σ_{H2O2} follows that described by Kahan *et al.*¹ 3 The values for σ_{H2O2} from the recommendation of Sander *et al.*² were used for wavelengths 4 below 320 nm, and the values measured by Kahan et al.¹ were used for wavelengths above 5 350 nm. Values of σ_{H2O2} between these wavelengths were determined from a cubic spline 6 interpolation between the values from the recommendation of Sander et al. from 310 to 320 7 nm and the values measured by Kahan et al.¹ from 353 to 410 nm. These values are 8 presented as Table S1. As shown in Figure S1, this treatment shows reasonable agreement 9 with the studies of Molina and Molina³ and Nicovich and Wine⁴. As discussed by Kahan et 10 $al.^{1}$, the recommendations of Sander *et al.*¹ may be biased high at wavelengths greater than 11 320 nm. 12

13

14 Table S1. Total absorption cross-sections for H_2O_2 (σ_{H2O2}), to three significant figures,

15 determined according to the procedure in Section S1 and used in the calculations of $\sigma_{RO2,OH}$

16 (see main text).

Wavelength (nm)	$\sigma_{\rm H2O2}$ (10 ⁻²² cm ² molecule ⁻¹)
310	39.0
315	29.0
320	22.0
325	16.5
330	11.9
340	5.42
345	3.48
350	2.37
355	1.89
357.5	1.57
360	1.33
362.5	1.13
1	

17

20 Figure S1. Total absorption cross-sections for H_2O_2 from the literature¹⁻⁶ (lines) at

- 21 wavelengths from 300 to 365 nm and the values (X) used for the calculation of $\sigma_{RO2,OH}$,
- 22 derived as described in section S1. Note the logarithmic scale on the y-axis.

23

26 photolysis laser energy at a photolysis wavelength of 350 nm. Error bars indicate the 1σ

27 uncertainty on the values of $\sigma_{RO2,OH}$ at this wavelength, as described in the main text.

28 References

24

- T. F. Kahan, R. A. Washenfelder, V. Vaida, and S. S. Brown, *J. Phys. Chem. A*, 2012, 116, 5941-5947.
- S. P. Sander, J. Abbatt, J. B. Barker, J. B. Burkholder, R. R. Freidl, D. M. Golden, R.
 E. Huie, C. E. Kolb, M. J. Kurylo, G. K. Moortgat, V. L. Orkin, and P. H Wine.,
- 33 Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,
- *Evaluation No. 17*, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, CA,
 2011.
- 36 3. L. T. Molina and M. J. Molina, J. Photochem., 1981, 15, 97-108.
- 4. J. M. Nicovich and P. H. Wine, J. Geophys. Res. [Atmos.], 1988, 93, 2417-2421.
- 5. C. L. Lin, N. K. Rohatgi, and W. B. DeMore, *Geophys. Res. Lett.*, 1978, 5, 113-115.
- G. L. Vaghjiani and A. R. Ravishankara, J. Geophys. Res. [Atmos.], 1989, 94, 3487 3492.