## **Supporting Information**

## Experimental and Theoretical Identification of Heptavalent Fe(VII) Oxidation State in FeO<sub>4</sub>-

Jun-Bo Lu,<sup>a†</sup> Jiwen Jian,<sup>b†</sup> Wei Huang,<sup>a</sup> Hailu Lin,<sup>b</sup> Jun Li<sup>a\*</sup>, Mingfei Zhou<sup>b\*</sup>

## **Calculation Results**

Geometric optimizations were performed on various possible structures of FeO<sub>4</sub><sup>-</sup> by using Gaussian 09. The optimized structural parameters of the four lowest-lying structures at the B3LYP level are shown in Figure 3 in the article. Structure **A** is a tetroxide with a <sup>2</sup>A<sub>1</sub> ground state and a slightly distorted tetrahedral structure of D<sub>2d</sub> symmetry. The four Fe=O bond are equivalent with a bond length of 160.4 pm. Structure **B** has a <sup>2</sup>A<sub>2</sub> ground state with C<sub>2v</sub> symmetry, which involves a side-on bonded peroxide ligand and a bent OFeO dioxide fragment. The two Fe-O bonds have a bond length of 179.1 pm and the two Fe=O bonds have a bond distance of 158.9 pm. The O-O bond with a bond length of 143.5 pm is a typical peroxide ligand. Structure **C** has a <sup>6</sup>B<sub>1</sub> ground state with C<sub>2v</sub> symmetry involving a side-on bonded superoxide ligand with an O-O bond length of 133.1 pm. The Fe-O bond lengths are 210.0 pm and the two Fe=O bond distances are 164.7 pm. The fourth structure (**D**) has a <sup>6</sup>A<sub>1</sub> ground state with D<sub>2d</sub> symmetry, which involves two equivalent side-on bonded peroxide ligands with an O-O bond distance of 149.4 pm.

The vibrational frequencies and intensities of the  $D_{2d}$  symmetry tetroxide FeO<sub>4</sub><sup>-</sup> and the  $C_{2v}$  symmetry  $[(\eta^2-O_2)FeO_2]^-$  calculated at various DFT levels are given in Tables S1 and S2. The relative energies of the four FeO<sub>4</sub><sup>-</sup> isomers calculated at various DFT levels and at the CCSD(T) level are listed in Table S3. Testing calculations showed that with extra diffusion functions similar results were obtained.

| B3LYP           |                 | TPSSh           |                 | M               | )6L             | PBE             |                 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| <sup>16</sup> O | <sup>18</sup> O |
| 911.2(265)      | 873.6(243)      | 941.9(374)      | 903.1(344)      | 911.0(171)      | 875.1(155)      | 897.3(156)      | 862.0(142)      |
| 903.3(183)      | 867.3(167)      | 920.0(174)      | 883.8(159)      | 881.5(206)      | 844.7(189)      | 868.4(193)      | 832.4(177)      |
| 884.6(0)        | 833.7(0)        | 880.8(0)        | 830.4(0)        | 862.2(0)        | 812.8(0)        | 842.5(0)        | 794.2(0)        |
| 396.6(1)        | 379.0(1)        | 390.1(1)        | 372.7(1)        | 392.3(1)        | 374.9(1)        | 378.4(1)        | 361.5(1)        |
| 361.7(0)        | 341.0(0)        | 362.0(0)        | 341.3(0)        | 354.6(0)        | 334.3(0)        | 351.2(0)        | 331.1(0)        |
| 338.3(0)        | 319.0(0)        | 330.5(0)        | 311.5(0)        | 326.0(0)        | 307.3(0)        | 318.7(10)       | 305.2(9)        |
| 336.9(10)       | 322.5(8)        | 327.1(10)       | 313.2(8)        | 321.3(16)       | 307.8(13)       | 317.1(0)        | 298.9(0)        |

**Table S1.** Calculated vibrational frequencies (cm<sup>-1</sup>) and intensities (in parentheses in km/mol) of the  $D_{2d}$  symmetry tetroxide FeO<sub>4</sub>- (Structure A in Figure 3).

**Table S2.** Calculated vibrational frequencies (cm<sup>-1</sup>) and intensities (in parentheses in km/mol) of the  $C_{2v}$  symmetry  $[(\eta^2-O_2)FeO_2]^-$  (Structure **B** in Figure 3).

| B3LYP           |                   | TPSSh           |                 | MO              | )6L             | PBE             |                 |
|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| <sup>16</sup> O | $^{18}\mathrm{O}$ | <sup>16</sup> O | <sup>18</sup> O | <sup>16</sup> O | <sup>18</sup> O | <sup>16</sup> O | <sup>18</sup> O |
| 987.2(163)      | 941.0(148)        | 981.4(156)      | 935.1(146)      | 972.9(160)      | 925.4(155)      | 951.1(142)      | 905.0(137)      |
| 964.3(343)      | 926.4(314)        | 960.9(174)      | 923.0(290)      | 942.0(301)      | 904.6(275)      | 868.4(193)      | 885.3(255)      |
| 954.0(1)        | 901.1(0.3)        | 944.4(4)        | 892.8(0)        | 939.4(11)       | 889.3(1)        | 913.2(10)       | 864.6(2)        |
| 590.1(5)        | 565.1(4)          | 606.3(7)        | 580.2(5)        | 600.3(11)       | 574.8(8)        | 594.2(10)       | 568.7(7)        |
| 490.9(20)       | 465.5(18)         | 486.3(20)       | 461.3(18)       | 483.5(19)       | 459.5(17)       | 436.5(17)       | 414.0(15)       |
| 333.5(1)        | 315.5(0)          | 323.6(1)        | 306.2(0)        | 331.4(1)        | 313.5(0)        | 320.2(0)        | 303.0(0)        |
| 247.9(0)        | 233.7(0)          | 242.0(0)        | 228.1(0)        | 255.2(0)        | 240.6(0)        | 237.0(0)        | 223.4(0)        |
| 236.2(3)        | 225.4(2)          | 229.1(3)        | 218.7(2)        | 237.8(3)        | 227.1(2)        | 223.2(3)        | 213.1(2)        |
| 221.9(21)       | 214.4(18)         | 225.0(17)       | 217.4(14)       | 235.7(11)       | 227.3(9)        | 221.2(10)       | 213.8(8)        |

**Table S3.** Relative energies (in kcal/mol) of different  $FeO_4^-$  isomers calculated at various DFT levels and at the CCSD(T) and CASPT2 level (The T<sub>1</sub> and D<sub>1</sub> diagnostic values are also listed).\*

| Isomer                                     | OS  | B3LYP | TPSSh | M06L | PBEPBE | CCSD(T) | CASPT2 | $T_1$ | <b>D</b> <sub>1</sub> |
|--------------------------------------------|-----|-------|-------|------|--------|---------|--------|-------|-----------------------|
| $\operatorname{FeO}_4^-(\mathbf{A})$       | VII | 5.9   | 0     | 0    | 0      | 0       | 0      | 0.09  | 0.35                  |
| $[(\eta^2-O_2)Fe^VO_2]^-$ ( <b>B</b> )     | V   | 0     | 2.6   | 14.9 | 16.6   | 2.3     | 19.91  | 0.05  | 0.17                  |
| $[(\eta^2-O_2)Fe^{IV}O_2]^-(C)$            | IV  | 5.1   | 14.7  | 28.2 | 43.2   | 14.4    | -      | 0.06  | 0.19                  |
| $[Fe(\eta^2 - O_2)^{2-2}]^{-}(\mathbf{D})$ | III | 24.9  | 33.4  | 53.7 | 69.9   | 30.0    | -      | 0.05  | 0.17                  |

\* The active space for CASPT2 includes Fe: 3d and O: 2p, i.e., CAS(25e,17o)

| FeO4-             |             | $[(\eta^2-O_2)Fe^VO_2]^-$ |             |
|-------------------|-------------|---------------------------|-------------|
| Configuration     | Coefficient | Configuration             | Coefficient |
| 2222a022202220220 | 0.7402755   | 2222202220220022a         | 0.8114299   |
| 2222a022202220202 | -0.1045014  | 2222202220202022a         | -0.1911704  |
| 2222a022202220022 | -0.0834496  | 2202202220220222a         | -0.1200733  |
| 2222a022022220220 | -0.0787872  | 2222202202220022a         | -0.0894352  |
| 2222a02220220220  | -0.0787868  | 222222020220022a          | -0.0759893  |
| 2222a022202220b2a | -0.071361   | 2222022220220022a         | -0.0737885  |
| 2220a222202220220 | -0.0646545  | 22222022202aa022b         | -0.0697289  |
| 222baa22202220220 | 0.0587601   | 22222022ba22002a2         | 0.0684319   |
| 2222a022202020222 | -0.0581526  | 2222ba2b2a220022a         | 0.067405    |
| 2222a020202220222 | -0.0581514  | 2222ba22ab220022a         | -0.0647612  |
| 222220a2202b2022a | 0.0541712   | 2222ab22ba220022a         | -0.0642977  |
| 2222202b20a22022a | -0.0541701  | 2ba220222022ab22a         | -0.0637674  |
| 222baa22202220a2b | -0.0539675  | 2222ba222022002a2         | -0.0633011  |
| 2222a022202a2b2ba | 0.052824    | 2220202222220022a         | -0.0606393  |
| 2222a02a2b22202ba | 0.052822    | 222b2b2a2a220022a         | -0.0596737  |
| 2222a0222022ba220 | 0.0525437   | 2222ab2a2b220022a         | 0.0591661   |
| 2222a022ba2220220 | 0.0525432   | 22222022202ba022a         | 0.0589569   |
| 222aab22202220b2a | -0.0518739  | 222a2a2b2b220022a         | -0.0583835  |
| 2222b022202220a2a | 0.0518255   | 22222022ba220022a         | 0.0573309   |
| 2a2220222022ba220 | -0.0517386  | 222b2a22ba220022a         | -0.0572414  |
| 2a222022ba2220220 | -0.0517357  | 2ab220222022ba22a         | -0.0552164  |
| 2222a022202220220 | 0.7402755   | 22222a2b20a200222         | -0.0550442  |
| 2222a022202220202 | -0.1045014  | 22222022ab22002a2         | -0.0539673  |
| 2222a022202220022 | -0.0834496  | 2222ba2220220022a         | -0.0539044  |
| 2222a022022220220 | -0.0787872  | 222b2a2b2a220022a         | 0.052896    |
| 2222a022202202220 | -0.0787868  | 222a2b22ab220022a         | -0.0523083  |
| 2222a022202220b2a | -0.071361   | 2bb220222022aa22a         | 0.05173     |
| 2220a222202220220 | -0.0646545  | 2222ab222022002a2         | 0.0507489   |
|                   |             | 2222202220220022a         | 0.8114299   |
|                   |             | 2222202220202022a         | -0.1911704  |
|                   |             | 2202202220220222a         | -0.1200733  |
|                   |             | 2222202202220022a         | -0.0894352  |
|                   |             | 222222020220022a          | -0.0759893  |
|                   |             | 2222022220220022a         | -0.0737885  |

Table S4. The configuration and coefficients of  $FeO_4^-$  and  $[(\eta^2-O_2)Fe^VO_2]^-$  from CAS(25e, 17o)-SCF.



**Figure S1**. Infrared spectra in the 1000-900 cm<sup>-1</sup> region from co-deposition of laser-evaporated iron atoms and electrons with 2.0 % O<sub>2</sub> in solid argon. (a) after 1 h of sample deposition at 4 K, (b) after 15 min of UV light irradiation ( $250 < \lambda < 580$  nm), (c) after annealing to 28 K, (d) after 15 min of visible light irradiation ( $500 < \lambda < 580$  nm), and (e) after 15 min of UV-visible light irradiation ( $280 < \lambda < 580$  nm).



**Figure S2.** Infrared spectra in the 950-700 cm<sup>-1</sup> region from co-deposition of Fe with different gas mixtures (spectra taken after 15 min of  $\lambda$ > 500 nm light irradiation minus spectrum after 28 K annealing). (a) 2 % O<sub>2</sub> in argon, (b) 2 % O<sub>2</sub> + 0.1 % CCl<sub>4</sub> in argon.



Figure S3. The optimized geometry structures of Ar-FeO<sub>4</sub><sup>-</sup> and Ar-[ $(\eta^2$ -O<sub>2</sub>)FeO<sub>2</sub>]<sup>-</sup>



**Figure S4.**  $FeO_4$ - natural valence orbitals with occupation numbers from CAS( $25_e, 17_o$ )-SCF calculations.



**Figure S5.**  $[(\eta^2-O_2)FeO_2]^-$  natural valence orbitals with occupation numbers from CAS(25<sub>e</sub>,17<sub>o</sub>)-SCF calculations.

## **Selection of Active Spaces and Energies of DMRG Calculations**

As discussed in the article, from the DMRG-CASCI natural orbitals of the two isomers **A** and **B**, we can conclude that the oxidation states of **A** and **B** are VII and V, respectively. From In our calculations, the DMRG-CASCI calculations need huge active space to obtain reasonable results. For CAS4, the energy gap between the two isomers is 4.58 kcal/mol. When further dynamic correlation is included, a slight change of relative energy occurs. For the DMRG-CASSCF-NEVPT2 calculations, the energy gap of two isomers is about 7.54 kcal/mol for CAS1. We can conclude that the two isomers are nearly degenerate when we add the Fe:4d orbitals into the active space from the result of DMRG-CASSCF-NEVPT2 calculations with CAS2. By inspecting the orbitals in the active space, it appears that some of the Fe 4d orbitals and O 3p orbitals also contribute to the strong static correlation.

| Active Space  | М        | FeO <sub>4</sub> - |                                    |             | [(η <sup>2</sup> -O <sub>2</sub> )FeO <sub>2</sub> ] <sup>-</sup> |                        |             |  |
|---------------|----------|--------------------|------------------------------------|-------------|-------------------------------------------------------------------|------------------------|-------------|--|
|               | M        | OS                 | Discarded weight                   | Energy      | OS                                                                | Discarded weight       | Energy      |  |
|               | 1000     |                    | 1.214×10 <sup>-4</sup>             | -1570.87885 |                                                                   | 2.814×10-5             | -1570.88405 |  |
|               | 2000     | VII                | 2.846×10 <sup>-4</sup>             | -1570.88058 |                                                                   | 7.886×10 <sup>-6</sup> | -1570.88436 |  |
| CAS(180, 25e) | 3000     |                    | 8.122×10 <sup>-6</sup>             | -1570.88086 | V                                                                 | 2.676×10 <sup>-6</sup> | -1570.88439 |  |
|               | 3500     |                    | 4.661×10 <sup>-6</sup>             | -1570.88089 |                                                                   | 1.606×10 <sup>-6</sup> | -1570.88440 |  |
|               | $\infty$ |                    | -                                  | -1570.88102 |                                                                   | -                      | -1570.88444 |  |
|               | 1000     |                    | 3.390×10 <sup>-4</sup>             | -1571.00321 |                                                                   | 2.208×10 <sup>-4</sup> | -1571.02469 |  |
|               | 2000     | VII                | 2.137×10-4                         | -1571.01558 |                                                                   | 1.046×10 <sup>-4</sup> | -1571.02852 |  |
| CAS(230, 25e) | 3000     |                    | 1.625×10-4                         | -1571.02035 | V                                                                 | 6.267×10-5             | -1570.02965 |  |
|               | 3500     |                    | 1.412×10-4                         | -1571.02187 |                                                                   | 5.128×10-5             | -1571.02995 |  |
|               | $\infty$ |                    | -                                  | -1571.04198 |                                                                   | -                      | -1571.03163 |  |
|               | 1000     |                    | 8.065×10 <sup>-4</sup> -1571.10836 |             | 1.165×10-4                                                        | -1571.14667            |             |  |
|               | 2000     | VII                | 5.030×10 <sup>-4</sup>             | -1571.12961 |                                                                   | 5.465×10-5             | -1571.15194 |  |
| CAS(260, 25e) | 3000     |                    | 3.435×10-4                         | -1571.13864 | V                                                                 | 3.587×10-5             | -1571.15308 |  |
|               | 3500     |                    | 2.922×10 <sup>-4</sup>             | -1571.14134 |                                                                   | 3.075×10 <sup>-5</sup> | -1571.15340 |  |
|               | $\infty$ |                    | -                                  | -1571.16084 |                                                                   | -                      | -1571.15340 |  |
|               | 1000     |                    | 5.710×10 <sup>-4</sup>             | -1571.32717 |                                                                   | 1.307×10-4             | -1571.38345 |  |
|               | 1500     |                    | 3.759×10 <sup>-4</sup>             | -1571.35922 |                                                                   | 1.042×10 <sup>-4</sup> | -1571.39046 |  |
| CAS(420, 25e) | 2000     | VII                | 4.552×10 <sup>-4</sup>             | -1571.34749 | V                                                                 | 9.01×10 <sup>-5</sup>  | -1571.39433 |  |
|               | 2500     |                    | 3.398×10 <sup>-4</sup>             | -1571.36844 |                                                                   | 8.124×10-5             | -1571.39690 |  |
|               | $\infty$ |                    | -                                  | -1571.42612 |                                                                   | -                      | -1571.41881 |  |

**Table S5.** DMRG-CASCI energy (in Hartree) versus discarded weight of the FeO<sub>4</sub><sup>-</sup> and  $[(\eta^2-O_2)FeO_2]^-$  for different types of active space.

| Oskitel sumh es |      | FeO <sub>4</sub> - | [(η <sup>2</sup> -O <sub>2</sub> )FeO <sub>2</sub> ] <sup>-</sup> |             |  |
|-----------------|------|--------------------|-------------------------------------------------------------------|-------------|--|
| Oronal number   | OS   | Energy             | OS                                                                | Energy      |  |
| CAS (180, 25e)  | 7711 | -1572.68179        | 17                                                                | -1572.65604 |  |
| CAS (230, 25e)  | VII  | -1572.60410        | v                                                                 | -1572.59127 |  |

**Table S6.** DMRG-CASCI-SC-NEVPT2 energy (in Hartree) of the FeO<sub>4</sub><sup>-</sup> and  $[(\eta^2-O_2)FeO_2]^-$ 



Figure S6. DMRG-CAS( $25_e$ ,  $41_o$ )-CI energy versus discarded weight of  $[(\eta^2-O_2)FeO_2]^-$ .



Figure S7. DMRG-CAS $(25_e, 41_o)$ -CI energy versus discarded weight of FeO<sub>4</sub><sup>-</sup>.



Figure S8. DMRG-CAS( $25_e$ ,  $42_o$ )-CI natural orbitals (with occupation numbers than 0.01) of [( $\eta^2$ -O<sub>2</sub>)FeO<sub>2</sub>]<sup>-</sup>.



**Figure S9.** DMRG-CAS( $25_e$ ,  $42_o$ )-CI natural orbitals (with occupation numbers than 0.01) of FeO<sub>4</sub><sup>-</sup>.



Figure S10. DMRG-CAS( $25_e$ ,  $18_o$ )-SCF natural orbitals (with occupation numbers) of  $[(\eta^2-O_2)FeO_2]^-$ .



Figure S11. DMRG-CAS(25<sub>e</sub>,18<sub>o</sub>)-SCF natural orbitals (with occupation numbers) of FeO<sub>4</sub><sup>-</sup>.



Figure S12. DMRG-CAS( $25_e$ ,  $23_o$ )-SCF natural orbitals (with occupation numbers) of [( $\eta^2$ -O<sub>2</sub>)FeO<sub>2</sub>]<sup>-</sup>.



Figure S13. DMRG-CAS(25<sub>e</sub>,23<sub>o</sub>)-SCF natural orbitals (with occupation numbers) of FeO<sub>4</sub><sup>-</sup>.



**Figure S14.** DMRG-CAS( $25_e$ ,  $26_o$ )-SCF natural orbitals (with occupation numbers) of  $[(\eta^2-O_2)FeO_2]^-$ .



Figure S15. DMRG-CAS(25<sub>e</sub>,26<sub>o</sub>)-SCF natural orbitals (with occupation numbers) of FeO<sub>4</sub><sup>-</sup>.

Table S7. DMRG-CASSCF and DMRG-CASSCF-SC-NEVPT2 energies (in Hartree) of the FeO<sub>4</sub><sup>-</sup> and  $[(\eta^2 - O_2)FeO_2]^-$ 

| Orbital number |     | FeO <sub>4</sub> - |                    | $[(\eta^2-O_2)FeO_2]^-$ |             |                    |  |
|----------------|-----|--------------------|--------------------|-------------------------|-------------|--------------------|--|
|                | OS  | DMRG-CASSCF        | MR-PT <sup>+</sup> | OS                      | DMRG-CASSCF | MR-PT <sup>+</sup> |  |
| CAS1           |     | -1571.19691        | -1572.63852        |                         | -1571.19319 | -1572.63480        |  |
| CAS2           | VII | -1571.35097        | -1572.63517        | V                       | -1571.35916 | -1572.63313        |  |
| CAS3           |     | -1571.44314        | -                  |                         | 1571.42867  | -                  |  |

<sup>†</sup>MR-PT is DMRG-CASSCF-SC-NEVPT2





**Figure S16.** Linear synchronous transit (LST) energy curves obtained by SR-DFT/B3LYP calculations, illustrating the transitions between  $[(\eta^2-O_2)Fe^VO_2]^-$  (quartet) and  $Fe^{VII}O_4^-$  (doublet) upon change of distance (R<sub>n</sub>) from Fe to the center of  $\eta^2-O_2$ , where  $R_n = R_0 - 0.0375n$ , with starting point  $R_1=1.644$  Å and ending point  $R_{20}=0.932$ Å.