Heat-treated carbon supported Fe(II) phthalocyanine ORR catalysts: elucidation of structure activity

relationship using XAS

Hamish A. Miller,<sup>1\*</sup> Marco Bellini,<sup>1</sup> Werner Oberhauser,<sup>1</sup> Xin Deng,<sup>2</sup> Hengquan Chen,<sup>2</sup> Qinggang He,<sup>2\*</sup> Ettore Vannaci,<sup>3</sup> Massimo Innocenti,<sup>1,3</sup> Ruoou Yang,<sup>4</sup> Fanfei Sun,<sup>4</sup> Zheng Jiang,<sup>4</sup> and Francesco Vizza<sup>1\*</sup>

<sup>1</sup> Institute of Chemistry of Organometallic Compounds, ICCOM-CNR, Polo Scientifico Area CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy. E-mail: hamish.miller@iccom.cnr.it, francesco.vizza@iccom.cnr.it

<sup>2</sup> College of Chemical & Biological Engineering, Zhejiang University, China. E-mail: qghe@zju.edu.cn

<sup>3</sup> Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.

<sup>4</sup> Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, P R China.

## **Supporting Information:**

## A. Cyclic voltammetry figures (CV)



Fig. S1 CVs in 0.1 M KOH N<sub>2</sub>-saturated (blue-line) and O<sub>2</sub>-saturated solutions (red-line) of FePc/C(400). Sweeping potentials linearly from -0.4 V to 0.1 V with a scan rate of 20 mV s<sup>-1</sup>.



Fig. S2 CVs of FePc/C(400) using RRDE at different rotation speeds left (disk) and right (ring).



Fig. S3 CVs in 0.1 M KOH N<sub>2</sub>-saturated (blue-line) and O<sub>2</sub>-saturated solutions (red-line) of FePc/C(500). Sweeping potentials linearly from -0.4 V to 0.1 V with a scan rate of 20 mV s<sup>-1</sup>.



Fig. S4 CVs of FePc/C(500) using RRDE at different rotation speeds left (disk) and right (ring).



Fig. S5 CVs in 0.1 M KOH N<sub>2</sub>-saturated (blue-line) and O<sub>2</sub>-saturated solutions (red-line) of FePc/C(600). Sweeping potentials linearly from -0.4 V to 0.1 V with a scan rate of 20 mV s<sup>-1</sup>.



Fig. S6 CVs of FePc/C(600) using RRDE at different rotation speeds left (disk) and right (ring).



Fig. S7 CVs in 0.1 M KOH N<sub>2</sub>-saturated (blue-line) and O<sub>2</sub>-saturated solutions (red-line) of FePc/C (700). Sweeping potentials linearly from -0.4 V to 0.1 V with a scan rate of 20 mV s<sup>-1</sup>.



Fig. S8 CVs of FePc/C (700) using RRDE at different rotation speeds left (disk) and right (ring).



Fig. S9 CVs in 0.1 M KOH N<sub>2</sub>-saturated (blue-line) and O<sub>2</sub>-saturated solutions (red-line) of FePc/C (800). Sweeping potentials linearly from -0.4 V to 0.1 V with a scan rate of 20 mV s<sup>-1</sup>.



Fig. S10 CVs of FePc/C(800) using RRDE at different rotation speeds left (disk) and right (ring).



Fig. S11 CVs in 0.1 M KOH N<sub>2</sub>-saturated (blue-line) and O<sub>2</sub>-saturated solutions (red-line) of FePc/C(900) and FePc/C(1000). Sweeping potentials linearly from -0.4 V to 0.1 V with a scan rate of 20 mV s<sup>-1</sup>.



Fig. S12 CVs of FePc/C(900) and FePc/C(1000) using RRDE at different rotation speeds left (disk)



Fig. S13 CVs of FePc/C(900) and FePc/C(1000) using RRDE at different rotation speeds left (ring)

## **B.** Koutecky–Levich Plots:

Koutecky-Levich plots were obtained based upon the following equations:<sup>1</sup>

$$\frac{1}{i} = \frac{1}{i_{cc}} + \frac{1}{k_d \sqrt{\omega}} \tag{1}$$

(2)

and

A plot of *i* vs  $\sqrt{\omega}$  is non linear with  $i = i_{cc}$  for  $\omega^{1/2} \rightarrow 0$ .

 $k_d = 0.620 n FACD^{\frac{2}{5}} v^{-\frac{1}{6}}$ 

Equation (1) can be changed substituting the current (i) with the current density (j) and using f instead of  $\omega$  to describe the rotation speed to give:

$$\frac{1}{J} = \frac{1}{J_{cc}} + \frac{1}{nK_f\sqrt{f}}$$

A plot of  $\frac{1}{J}VS\frac{1}{\sqrt{f}}$ , should be a linear plot with the slope of;

 $m_{KL} = \frac{1}{nfK}$  combined with  $q = \frac{1}{J_{cc}}$  we can obtain the number of electrons exchanged during the

process using:

$$n_{KL} = \frac{1}{K_f m_{KL}}$$

With the following values; *C*, *D*, *v* for a solution of KOH 0.1M saturated with  $O_2$  to obtain the value of  $K_{f}$ .

- $C_{o2} = 1.15*10^{-5}$
- $D_{o2} = 1.95 * 10^{-5} cm^2/s$   $\Rightarrow K_f = 0.03538$
- $v = 8.98 \times 10^{-3} cm^2/s$



Fig. S14 Koutecky–Levich plot for ORR in O<sub>2</sub>-saturated 0.1 M KOH solution of FePc/C(400 °C)



Fig. S15 Koutecky–Levich plot for ORR in O<sub>2</sub>-saturated 0.1 M KOH solution of FePc/C(500 °C).



Fig. S16 Koutecky–Levich plot for ORR in O<sub>2</sub>-saturated 0.1 M KOH solution of FePc/C(600 °C).



Fig. S17 Koutecky–Levich plot for ORR in O<sub>2</sub>-saturated 0.1 M KOH solution of FePc/C(700 °C).



Fig. S18 Koutecky–Levich plot for ORR in O<sub>2</sub>-saturated 0.1 M KOH solution of FePc/C(800 °C).



Fig. S19 Koutecky–Levich plots for ORR in O<sub>2</sub>-saturated 0.1 M KOH solution of FePc/C(900 °C) and FePc/C(1000 °C).



Fig. S20 Chronopotentiometric curves for the ORR. Experimental conditions: KOH 0.1 M, O<sub>2</sub> saturated, RDE  $\Omega$  = 1600 rpm, constant current chronopotentiometry at 2.5mA cm<sup>-2</sup>, ref. electrode Ag|AgCl|KCl<sub>sat</sub> (all potentials are also referred to RHE).



Fig. S21 Linear polarization experiments in O<sub>2</sub> sat. 0.1M KOH and in O<sub>2</sub> sat. 0.1M KOH with 1M methanol.



Fig. S22. Number of exchanged electrons  $(n_b)$  before the rds plotted against the heat treatment temperature.

## C. XAS fittings



Fig. S23 Fourier transform of the Fe K edge EXAFS spectrum of metallic Fe foil. The Fe-Fe peaks are marked by arrows.











Fig. S24 Fourier transform EXAFS spectra of FePc reference and samples treated from 400 - 1000°C.  $k^2$ :  $\Delta k = 2.8 - 11.8$ Å<sup>-1</sup>, $\Delta r = 1.1 - 3.2$ Å



Fig. S25 Fe Kedge XANES spectra of Fe(II)Pc-C treated between 400 - 700 °C with respect to references.



Fig. S26. Typical power density and IV curves (scan rate: 50 mA s<sup>-1</sup>) for  $H_2/O_2$  monoplanar AEM-FCs with Pt/C as both anode and cathode catalysts (0.4 mg<sub>Pt</sub> cm<sup>-2</sup>).  $T_{cell} = 55$  °C.  $H_2/O_2$  (100% relative humidity, RH) with the flow rate of 100 and 200 mL min<sup>-1</sup> respectively.

References:

1. E. Higuchi, H. Uchida and M. Watanabe, *J Electroanal Chem*, 2005, 583, 69-76.