(Supplementary Information)

Atomic-thin layer of Ru/MoS₂ heterostructure: structural, electronic, and magnetic properties

Chenghuan Jiang,^a Rongqin Zhou,^b Zhaohui Peng,^b Jinfu Zhu^a and Qian Chen*^b

^a Institute of Communication and Technology, Communication University, Nanjing 211172, China

^b Department of Physics, Southeast University, Nanjing 211189, China

*Corresponding Author Email: qc119@seu.edu.cn.

1. The atomic structures of 4×4 supercell for single and 5×5 supercell for double and trifoliate Ru atoms adsorbed on MoS₂. A $3\times3\times1$ k-mesh based on gamma-centred scheme is applied for relaxation calculations and a gamma-centred $7\times7\times1$ grid for static calculations.

Fig. S1. The atomic structures of 4×4 supercell for single and 5×5 supercell for double and trifoliate Ru atoms adsorbed on MoS₂.

2. The lattice relaxation has been applied for the fully covered Ru/MoS₂ system, as shown in Fig. S2a. The optimized lattice constant is 3.22 Å, which is larger than 3.18 Å of pure MoS₂. Here, a $5 \times 5 \times 1$ k-mesh based on gamma-centred scheme is applied for relaxation calculations of 2×2 supercell. A 4×4 supercell for single Ru adsorption configurations is also relaxed and the lattice constant is ~3.18 Å (see Fig. S2b).

Fig. S2. The fitted line of total energy versus lattice constants, the units of lattice constants are given in angstroms.

3. A 6×6 supercell of Ru/MoS₂ layer has been constructed to calculate the FM and AFM coupling states, as shown in Fig. S3. The energy difference (ΔE_{AFM-FM}) is 173meV, which has verified the accuracy of the result ($\Delta E_{AFM-FM} = 171$ meV) obtained from a 2×2 supercell.

Fig. S3. Spin density of a 6×6 Ru/MoS₂ layer with FM (a) and AFM (b) coupling, the iso-value is 0.008 e/Å³.