Electronic Supplementary Information (ESI)

Trends in water-promoted oxygen dissociation on transition metal surfaces from first principles

Ming Yan, Zheng-Qing Huang, Yu Zhang, Chun-Ran Chang*

Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China

*Corresponding to changer@mail.xjtu.edu.cn (C.R. C.)

Metals	a/ Å	b/ Å	c/ Å	References
Со	2.51	2.51	4.07	[52]
Rh	3.80	3.80	3.80	[53]
Ir	3.84	3.84	3.84	[54]
Ni	3.52	3.52	3.52	[55]
Pd	3.89	3.89	3.89	[56]
Pt	3.92	3.92	3.92	[57]
Cu	3.62	3.62	3.62	[58]
Ag	4.09	4.09	4.09	[59]
Au	4.08	4.08	4.08	[53]

Table S1 The experiential lattice parameters of nine transition metals

Table S2 Calculated adsorption characteristics of O_2 and H_2O on selected transition metal surfaces using DFT method

Surfaces	$E_{ads}(O_2)^a$	$E_{ads}(H_2O)^b$	$\begin{array}{c} E_{\rm ads} \\ ({\rm O_2\cdots H_2O})^c \end{array}$	$\Delta E_{\mathrm{ads}}^{d}$	$d(O-O)^e$
Co(0001)	-2.08	-0.43	-2.90	-0.39	1.51
Rh(111)	-1.61	-0.55	-2.52	-0.36	1.42
Ir(111)	-1.20	-0.52	-1.94	-0.21	1.44
Ni(111)	-1.84	-0.37	-2.72	-0.52	1.46
Pd(111)	-0.83	-0.40	-1.49	-0.29	1.36
Pt(111)	-0.53	-0.41	-1.13	-0.19	1.36
Cu(111)	-0.49	-0.26	-1.06	-0.32	1.44
Ag(111)	0.27	-0.18	-0.34	-0.43	1.35
Au(111)	-0.05	-0.17	0.39	0.61	1.23

 ${}^{a}E_{ads}(O_{2})$ represents the adsorption energy of O_{2} ; ${}^{b}E_{ads}(H_{2}O)$ represents the adsorption energy of $H_{2}O$; ${}^{c}E_{ads}(O_{2}\cdots H_{2}O)$ represents the co-adsorption energy of O_{2} and $H_{2}O$; ${}^{d}\Delta E_{ads} = E_{ads}(O_{2}\cdots H_{2}O) - (E_{ads}(O_{2}) + E_{ads}(H_{2}O))$; ${}^{e}d(O-O)$ represents the distance between two O atoms of O_{2} . The unit of energy, bond length and charge is eV, A, and e, respectively.

The Gibbs free energy is calculated as follows (eq (2), eq (3)):

$$G(T) = H(T) - TS(T)$$
⁽²⁾

$$H(T) = U(T) + k_B T \tag{3}$$

Where *T* represents the temperature, G(T), H(T), S(T), U(T) represent the Gibbs free energy, the corresponding enthalpy, the entropy, the internal thermal energy at T K at the standard conditions, respectively. k_B is the Boltzmann constant.

Table S3 The individual adsorption energies of O_2 and H_2O , the co-adsorption energies of O_2 and H_2O on transition metal surfaces

Surfaces	$E_{\rm ads}$ (O ₂) ^a	E_{ads} (H ₂ O) ^b	E_{ads} (O ₂ ····H ₂ O	E_{ads}^{ZPE} D) ^c (O ₂) ^d	$E_{ m ads}^{ m ZPE}$ (H ₂ O) ^e	E_{ads}^{ZPE} $(O_2 \cdots H_2 O)^{f}$	$\Delta G_{\rm ads}$ (O ₂) ^g	$\Delta G_{\rm ads}$ (H ₂ O) ^h	$\frac{\Delta G_{\rm ads}}{({\rm O_2\cdots H_2O})^i}$
Co(0001)	-2.26	-0.72	-3.40	-2.25	-0.66	-3.32	-2.28	-0.70	-3.41
Rh(111)	-1.74	-0.79	-2.93	-1.70	-0.71	-2.79	-1.74	-0.74	-2.83
Ir(111)	-1.24	-0.74	-2.40	-1.21	-0.66	-2.25	-1.23	-0.72	-2.28
Ni(111)	-2.01	-0.66	-3.22	-1.98	-0.60	-3.11	-2.03	-0.65	-3.20
Pd(111)	-0.91	-0.54	-1.74	-0.87	-0.47	-1.60	-0.90	-0.54	-1.66
Pt(111)	-0.60	-0.60	-1.46	-0.56	-0.53	-1.31	-0.58	-0.62	-1.37
Cu(111)	-0.60	-0.44	-1.40	-0.58	-0.38	-1.29	-0.62	-0.44	-1.55
Ag(111)	0.19	-0.31	-0.57	-0.20	-0.26	-0.47	0.14	-0.35	-0.57
Au(111)	-0.11	-0.29	0.17	-0.10	-0.24	0.27	-0.14	-0.33	0.12

 ${}^{a}E_{ads}(O_2)$ represents the adsorption energy of O_2 ; ${}^{b}E_{ads}(H_2O)$ represents the adsorption energy of H_2O ; ${}^{c}E_{ads}(O_2\cdots H_2O)$ represents the co-adsorption energy of O_2 and H_2O ; ${}^{d}E_{ads}{}^{ZPE}(O_2)$, ${}^{e}E_{ads}{}^{ZPE}(H_2O)$, ${}^{f}E_{ads}{}^{ZPE}(O_2\cdots H_2O)$ represent the adsorption energies of O_2 , H_2O and $O_2\cdots H_2O$ with zero point energy corrections, respectively; ${}^{g}\Delta G_{ads}(O_2)$, ${}^{h}\Delta G_{ads}(H_2O)$ and ${}^{i}\Delta G_{ads}(O_2\cdots H_2O)$ represent the adsorption free energies of O_2 , H_2O and $O_2\cdots H_2O$ at 298.15 K, respectively. The unit of energy is eV.

	Molecular adsorbed O ₂							
Surfaces	Spin (S_{O_2})	Spin Multiplicity $(2 S_{o_2} + 1)$	Spin state					
Co(0001)	0.23	1.46	singlet					
Rh(111)	0	1	singlet					
Ir(111)	0	1	singlet					
Ni(111)	0.14	1.28	singlet					
Pd(111)	0	1	singlet					
Pt(111)	0	1	singlet					
Cu(111)	0	1	singlet					
Ag(111)	0	1	singlet					
Au(111)	1	3	triplet					

Table S4 The spin states of adsorbed O_2 on nine transition metal surfaces

Table S5 The optimized structures of initial states, transition states and final states ofadsorbed O_2 and $O_2 \cdots H_2 O$ on transition metal surfaces

Surfaces	Structures							
$C_{0}(0001)$	IS4	TS4	FS4					
00001)								
	IS4'	TS4'	FS4′					
Rh(111)								
	IS5	TS5	FS5					

Surfaces		Structures	
Rh(111)	IS5'	TS5'	FS5'
	ISG	TS6	FS6
Ni(111)			
	IS6'	TS6'	FS6'
Pd(111)	IS7	TS7	FS7
	IS7'	TS7'	FS7'
Cu(111)	IS8	TS8	FS8
	IS8′	TS8′	FS8′
Au(111)	IS9	TS9	FS9
	IS9'	TS9'	FS9′

The *d*-band center which is generally used to describe the *d*-state of metal surfaces is calculated as:

d band center =
$$\frac{E_d}{N_d} = \frac{\int_{-\infty}^{0} \rho E dE}{\int_{-\infty}^{0} \rho dE}$$

where E_d is the total energy of occupied *d* electrons, N_d the total number of occupied d electrons, ρ the density of d states.

 Table S6 The *d*-band centers for the adsorption sites of the nine transition metal surfaces

Surfaces	<i>d</i> -band center / eV	Surfaces	<i>d</i> -band center / eV	Surfaces	<i>d</i> -band center / eV
Co(0001)	-2.26	Ni(111)	-1.98	Cu(111)	-2.55
Rh(111)	-2.55	Pd(111)	-2.95	Ag(111)	-4.00
Ir(111)	-3.04	Pt(111)	-2.58	Au(111)	-3.48

Table S7 The activation barriers and reaction energies of O_2 dissociation without and with co-adsorbed H_2O on transition metal surfaces

Surfaces	Witho	Without H ₂ O					With H ₂ O					
	$E_{a}{}^{a}$	ΔE^{b}	$E_{a}^{ZPE c}$	$\Delta E^{\text{ZPE} a}$	$^{l} \Delta G_{a}^{e}$	ΔG^{f}	$E_{a}{}^{a}$	ΔE^{b}	$E_{\rm a}^{\rm ZPEc}$	$\Delta E^{\text{ZPE } d}$	ΔG_{a}^{e}	ΔG^{f}
Co(0001)	0.04	-3.27	-0.03	-3.23	0.03	-3.20	0.01	-3.19	0.00	-3.12	0.00	-3.08
Rh(111)	0.22	-2.37	-0.21	-2.34	0.20	-2.33	0.14	-2.21	0.09	-2.18	0.09	-2.18
Ir(111)	0.71	-2.13	-0.65	-2.11	0.62	-2.08	0.45	-1.88	0.37	-1.89	0.37	-1.91
Ni(111)	0.28	-2.64	-0.27	-2.60	0.26	-2.57	0.14	-2.54	0.11	-2.50	0.11	-2.48
Pd(111)	0.71	-1.76	-0.67	-1.75	0.65	-1.72	0.49	-1.60	0.43	-1.60	0.43	-1.60
Pt(111)	1.02	-1.02	-0.95	-1.02	0.92	-0.98	0.75	-0.78	0.68	-0.79	0.65	-0.79
Cu(111)	0.51	-2.11	-0.47	-2.08	0.45	-2.04	0.33	-2.02	0.30	-1.99	0.28	-1.98
Ag(111)	1.10	-0.32	-1.07	-0.31	1.07	-0.26	0.85	-0.41	0.81	-0.40	0.81	-0.37
Au(111)	2.52	1.24	-2.49	1.25	2.50	1.28	1.50	0.36	1.44	0.36	1.45	0.44

^{*a*} E_a represents the activation barrier of O_2 dissociation; ^{*b*} ΔE represents the reaction energy of O_2 dissociation; ^{*c*} E_a^{ZPE} and ^{*d*} ΔE^{ZPE} represent the activation barrier and the reaction energy of O_2 dissociation with zero point energy corrections; ^{*e*} ΔG_a and ^{*f*} ΔG represent the free energy barrier and reaction free energy of O_2 dissociation at 298.15 K. The unit of energy is eV.

Fig. S1 Mulliken charge distribution of Rh(111) surface adsorbed with O_2 (a) and $O_2 \cdots H_2 O$ (b).