1

## Halogenated MOF-5 variants show new configuration, tunable band gaps and enhanced optical response in the visible and near infrared

## Supporting Information

Li-Ming Yang,\*<sup>1</sup> Guo-Yong Fang,<sup>2</sup> Jing Ma,<sup>2</sup> Raghani Pushpa,<sup>3</sup> and Eric Ganz<sup>4</sup>

<sup>1</sup>School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; <sup>2</sup>School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China; <sup>3</sup>Department of Physics, Boise State University, Boise, ID, USA; <sup>4</sup>Department of Physics, University of Minnesota, 116 Church St., SE, Minneapolis, Minnesota 55416, USA. (E-mail: Imyang.uio@gmail.com)

Page5, Table S1. Summary of measurements from molecular dynamics simulations. Page6, Fig. S1. The calculated TDOS for (Zn, Z)-90 ° subseries (Z = F, Cl, Br, I)Page7, Fig. S2. The calculated TDOS for (Cd, Z)-90  $^{\circ}$  subseries (Z = F, Cl, Br, I) Page8, Fig. S3. The calculated TDOS for (Be, Z)-90  $^{\circ}$  subseries (Z = F, Cl, Br, I) Page9, Fig. S4. The calculated TDOS for (Mg, Z)-90  $^{\circ}$  subseries (Z = F, Cl, Br, I) Page10, Fig. S5. The calculated TDOS for (Ca, Z)-90  $^{\circ}$  subseries (Z = F, Cl, Br, I) Page11, Fig. S6. The calculated TDOS for (Sr, Z)-90  $^{\circ}$  subseries (Z = F, Cl, Br, I) Page12, Fig. S7. The calculated TDOS for (Ba, Z)-90  $^{\circ}$  subseries (Z = F, Cl, Br, I) Page13, Fig. S8. The calculated TDOS and PDOS for (Zn, F)-90° Page14, Fig. S9. The calculated TDOS and PDOS for (Zn, Cl)-90° Page15, Fig. S10. The calculated TDOS and PDOS for (Zn, Br)-90° Page16, Fig. S11. The calculated TDOS and PDOS for (Zn, I)-90  $^{\circ}$ Page17, Fig. S12. The calculated TDOS and PDOS for (Cd, F)-90° Page18, Fig. S13. The calculated TDOS and PDOS for (Cd, Cl)-90° Page19, Fig. S14. The calculated TDOS and PDOS for (Cd, Br)-90° Page20, Fig. S15. The calculated TDOS and PDOS for (Cd. I)-90  $^{\circ}$ Page21, Fig. S16. The calculated TDOS and PDOS for (Be, F)-90° Page22, Fig. S17. The calculated TDOS and PDOS for (Be, Cl)-90° Page23, Fig. S18. The calculated TDOS and PDOS for (Be, Br)-90 ° Page24, Fig. S19. The calculated TDOS and PDOS for (Be, I)-90  $^{\circ}$ Page25, Fig. S20. The calculated TDOS and PDOS for (Mg, F)-90 ° Page26, Fig. S21. The calculated TDOS and PDOS for (Mg, Cl)-90° Page27, Fig. S22. The calculated TDOS and PDOS for (Mg, Br)-90° Page28, Fig. S23. The calculated TDOS and PDOS for (Mg, I)-90° Page29, Fig. S24. The calculated TDOS and PDOS for (Ca, F)-90° Page30, Fig. S25. The calculated TDOS and PDOS for (Ca, Cl)-90° Page31, Fig. S26. The calculated TDOS and PDOS for (Ca, Br)-90°

- Page32, Fig. S27. The calculated TDOS and PDOS for (Ca, I)-90  $^\circ$
- Page33, Fig. S28. The calculated TDOS and PDOS for (Sr, F)-90  $^{\circ}$
- Page34, Fig. S29. The calculated TDOS and PDOS for (Sr, Cl)-90  $^\circ$
- Page35, Fig. S30. The calculated TDOS and PDOS for (Sr, Br)-90  $^\circ$
- Page36, Fig. S31. The calculated TDOS and PDOS for (Sr, I)-90  $^{\circ}$
- Page37, Fig. S32. The calculated TDOS and PDOS for (Ba, F)-90  $^{\circ}$
- Page38, Fig. S33. The calculated TDOS and PDOS for (Ba, Cl)-90  $^\circ$
- Page39, Fig. S34. The calculated TDOS and PDOS for (Ba, Br)-90  $^\circ$
- Page40, Fig. S35. The calculated TDOS and PDOS for (Ba, I)-90  $^\circ$

Page41, **Table S2**. The calculated Hirschfeld charges and bond overlap populations for (Zn, Z)-90  $^{\circ}$  (Z = F, Cl, Br, and I) and (Zn, H)-0  $^{\circ}$ .

Page42, **Table S3**. The electron configurations of atoms for (Zn, Z)-90 °(Z = F, Cl, Br, and I) and (Zn, H)-0 ° from Mulliken atomic populations with CASTEP code.

Page43, **Table S4**. The calculated Hirschfeld charges and bond overlap populations for (Cd, Z)-90  $^{\circ}$  (Z = F, Cl, Br, and I) and (Cd, H)-0  $^{\circ}$ .

Page44, **Table S5**. The electron configurations of atoms for (Cd, Z)-90  $^{\circ}$ (Z = F, Cl, Br, and I) and (Cd, H)-0  $^{\circ}$ from Mulliken atomic populations with CASTEP code.

Page45, **Table S6**. The calculated Hirschfeld charges and bond overlap populations for (Be, Z)-90  $^{\circ}$  (Z = F, Cl, Br, and I) and (Be, H)-0  $^{\circ}$ .

Page46, **Table S7**. The electron configurations of atoms for (Be, Z)-90  $^{\circ}$ (Z = F, Cl, Br, and I) and (Be, H)-0  $^{\circ}$ from Mulliken atomic populations with CASTEP code.

Page47, **Table S8**. The calculated Hirschfeld charges and bond overlap populations for (Mg, Z)-90  $^{\circ}$  (Z = F, Cl, Br, and I) and (Mg, H)-0  $^{\circ}$ .

Page48, **Table S9**. The electron configurations of atoms for (Mg, Z)-90  $^{\circ}$ (Z = F, Cl, Br, and I) and (Mg, H)-0  $^{\circ}$ from Mulliken atomic populations with CASTEP code.

Page49, **Table S10**. The calculated Hirschfeld charges and bond overlap populations for (Ca, Z)-90  $^{\circ}$  (Z = F, Cl, Br, and I) and (Ca, H)-0  $^{\circ}$ .

Page50, **Table S11**. The electron configurations of atoms for (Ca, Z)-90  $^{\circ}$ (Z = F, Cl, Br, and I) and (Ca, H)-0  $^{\circ}$ from Mulliken atomic populations with CASTEP code.

Page51, **Table S12**. The calculated Hirschfeld charges and bond overlap populations for (Sr, Z)-90  $^{\circ}$  (Z = F, Cl, Br, and I) and (Sr, H)-0  $^{\circ}$ .

Page52, **Table S13**. The electron configurations of atoms for (Sr, Z)-90  $^{\circ}$ (Z = F, Cl, Br, and I) and (Sr, H)-0  $^{\circ}$ from Mulliken atomic populations with CASTEP code.

Page53, **Table S14**. The calculated Hirschfeld charges and bond overlap populations for (Ba, Z)-90  $^{\circ}$  (Z = F, Cl, Br, and I) and (Ba, H)-0  $^{\circ}$ .

Page54, **Table S15**. The electron configurations of atoms for (Ba, Z)-90  $^{\circ}$ (Z = F, Cl, Br, and I) and (Ba, H)-0  $^{\circ}$ from Mulliken atomic populations with CASTEP code.

Page55, Fig. S36. Calculated optical properties for (Cd, Z)-90 °(Z=F, Cl, Br, I) and (Cd, H)-0 °.

Page56, Fig. S37. Calculated optical properties for (Be, Z)-90 °(Z= F, Cl, Br, I) and (Be, H)-0 °.

Page57, Fig. S38. Calculated optical properties for (Mg, Z)-90 °(Z= F, Cl, Br, I) and (Mg, H)-0 °.

Page58, Fig. S39. Calculated optical properties for (Ca, Z)-90 °(Z=F, Cl, Br, I) and (Ca, H)-0 °.

Page59, Fig. S40. Calculated optical properties for (Sr, Z)-90 °(Z=F, Cl, Br, I) and (Sr, H)-0 °.

Page60, Fig. S41. Calculated optical properties for (Ba, Z)-90 °(Z= F, Cl, Br, I) and (Ba, H)-0 °.

Page61, Fig. S42. Calculated optical properties for (Zn, F)-90  $^{\circ}$ 

Page62, Fig. S43. Calculated optical properties for (Zn, Cl)-90  $^\circ$ 

Page63, Fig. S44. Calculated optical properties for (Zn, Br)-90°

Page64, Fig. S45. Calculated optical properties for (Zn, I)-90° Page65, Fig. S46. Calculated optical properties for (Cd, F)-90° Page66, Fig. S47. Calculated optical properties for (Cd, Cl)-90° Page67, Fig. S48. Calculated optical properties for (Cd, Br)-90° Page68, Fig. S49. Calculated optical properties for (Cd, I)-90° Page69, Fig. S50. Calculated optical properties for (Be, F)-90° Page70, Fig. S51. Calculated optical properties for (Be, Cl)-90° Page71, Fig. S52. Calculated optical properties for (Be, Br)-90° Page72, Fig. S53. Calculated optical properties for (Be, I)-90° Page73, Fig. S54. Calculated optical properties for (Mg, F)-90° Page74, Fig. S55. Calculated optical properties for (Mg, Cl)-90° Page75, Fig. S56. Calculated optical properties for (Mg, Br)-90° Page76, Fig. S57. Calculated optical properties for (Mg, I)-90° Page77, Fig. S58. Calculated optical properties for (Ca, F)-90° Page78, Fig. S59. Calculated optical properties for (Ca, Cl)-90° Page79, Fig. S60. Calculated optical properties for (Ca, Br)-90° Page80, Fig. S61. Calculated optical properties for (Ca, I)-90° Page81, Fig. S62. Calculated optical properties for (Sr, F)-90° Page82, Fig. S63. Calculated optical properties for (Sr, Cl)-90° Page83, Fig. S64. Calculated optical properties for (Sr, Br)-90° Page84, Fig. S65. Calculated optical properties for (Sr, I)-90° Page85, Fig. S66. Calculated optical properties for (Ba, F)-90° Page86, Fig. S67. Calculated optical properties for (Ba, Cl)-90° Page87, Fig. S68. Calculated optical properties for (Ba, Br)-90° Page88, Fig. S69. Calculated optical properties for (Ba, I)-90° Page89, Fig. S70. The electronic band structure of (Zn, F)-90 °. Page90, Fig. S71. The electronic band structure of (Zn, Cl)-90 °. Page91, Fig. S72. The electronic band structure of (Zn, Br)-90°. Page92, Fig. S73. The electronic band structure of (Zn, I)-90 °. Page93, Fig. S74. The electronic band structure of (Cd, F)-90 °. Page94, Fig. S75. The electronic band structure of (Cd, Cl)-90 °. Page95, Fig. S76. The electronic band structure of (Cd, Br)-90°. Page96, Fig. S77. The electronic band structure of (Cd, I)-90 °. Page97, Fig. S78. The electronic band structure of (Be, F)-90 °. Page98, Fig. S79. The electronic band structure of (Be, Cl)-90 °. Page99, Fig. S80. The electronic band structure of (Be, Br)-90 °. Page100, Fig. S81. The electronic band structure of (Be, I)-90 °. Page101, Fig. S82. The electronic band structure of (Mg, F)-90°. Page102, Fig. S83. The electronic band structure of (Mg, Cl)-90 °. Page103, Fig. S84. The electronic band structure of (Mg, Br)-90°. Page104, Fig. S85. The electronic band structure of (Mg, I)-90 °. Page105, Fig. S86. The electronic band structure of (Ca, F)-90°. Page106, Fig. S87. The electronic band structure of (Ca, Cl)-90 °. Page107, Fig. S88. The electronic band structure of (Ca, Br)-90 °. Page108, Fig. S89. The electronic band structure of (Ca, I)-90 °. Page109, Fig. S90. The electronic band structure of (Sr, F)-90 °.

| Page110, <b>Fig. S91.</b> The electronic band structure of (Sr, Cl)-90 | э<br>• |
|------------------------------------------------------------------------|--------|
| Page111, Fig. S92. The electronic band structure of (Sr, Br)-90        | •      |
| Page112, Fig. S93. The electronic band structure of (Sr, I)-90 °.      |        |
| Page113, Fig. S94. The electronic band structure of (Ba, F)-90 °       | •      |
| Page114, Fig. S95. The electronic band structure of (Ba, Cl)-90        | °.     |
| Page115, Fig. S96. The electronic band structure of (Ba, Br)-90        | •      |
| Page116, Fig. S97. The electronic band structure of (Ba, I)-90 °.      |        |
|                                                                        |        |
|                                                                        |        |
|                                                                        |        |

| Material |     | 0 K 600 K |       |     | Lattice Constant |       | Lattice Fraction |        |        |
|----------|-----|-----------|-------|-----|------------------|-------|------------------|--------|--------|
|          |     |           | 600 K | BLE | Time             | 0K    | 600 K            | Linear | Volume |
|          |     | Å         | Å     | %   | ps               | Å     | Å                |        |        |
| CdI      | C-C | 1.43      | 1.47  | 3%  | 7.6              | 19.70 | 19.41            | 0.99   | 0.96   |
|          | C-I | 2.13      | 2.34  | 10% |                  |       |                  |        |        |
|          |     |           |       |     |                  |       |                  |        |        |
| CdF      | C-C | 1.39      | 1.49  | 7%  | 4.45             | 19.30 | 19.20            | 1.00   | 0.99   |
|          | C-F | 1.35      | 1.43  | 6%  |                  |       |                  |        |        |
|          |     |           |       |     |                  |       |                  |        |        |
| ZnI      | C-C | 1.40      | 1.47  | 5%  | 6.36             | 18.45 | 18.43            | 1.00   | 1.00   |
|          | C-I | 2.10      | 2.30  | 10% |                  |       |                  |        |        |
|          |     |           |       |     |                  |       |                  |        |        |
| ZnF      | C-C | 1.39      | 1.47  | 5%  | 5.4              | 18.47 | 18.61            | 1.01   | 1.02   |
|          | C-F | 1.35      | 1.45  | 7%  |                  |       |                  |        |        |

**Table S1.** Summary of measurements from molecular dynamics simulations.



**Figure S1.** Calculated total density of states (TDOS) for the (Zn, Z)-90 ° subseries, (Z = F, Cl, Br, I) in the equilibrium cubic structure with *Fm-3m* symmetry (no. 225).



**Figure S2.** Calculated total density of states (TDOS) for the (Cd, Z)-90 °subseries, (Z = F, Cl, Br, I) in the equilibrium cubic structure with *Fm-3m* symmetry (no. 225).



**Figure S3.** Calculated total density of states (TDOS) for the (Be, Z)-90 ° subseries, (Z = F, Cl, Br, I) in the equilibrium cubic structure with *Fm-3m* symmetry (no. 225).



Figure S4. Calculated total density of states (TDOS) for the (Mg, Z)-90 ° subseries, (Z = F, Cl, Br, I) in the equilibrium cubic structure with *Fm-3m* symmetry (no. 225).

Energy (eV)

-10

0

10



**Figure S5.** Calculated total density of states (TDOS) for the (Ca, Z)-90 ° subseries, (Z = F, Cl, Br, I) in the equilibrium cubic structure with *Fm-3m* symmetry (no. 225).



**Figure S6.** Calculated total density of states (TDOS) for the (Sr, Z)-90 ° subseries, (Z = F, Cl, Br, I) in the equilibrium cubic structure with *Fm-3m* symmetry (no. 225).



**Figure S7.** Calculated total density of states (TDOS) for the (Ba, Z)-90 ° subseries, (Z = F, Cl, Br, I) in the equilibrium cubic structure with *Fm-3m* symmetry (no. 225).



**Figure S8.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Zn, F)-90 ° in the cubic *Fm-3m* symmetry (no. 225). Note that the atomic labels of atoms for all PDOS are numbered according to Figure 1. This is also the case for all the PDOS plots.



**Figure S9.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Zn, Cl)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S10.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Zn, Br)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S11.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Zn, I)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S12.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Cd, F)-90 ° in the cubic *Fm*-3*m* symmetry (no. 225).



**Figure S13.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Cd, Cl)-90 °in the cubic *Fm-3m* symmetry (no. 225).



**Figure S14.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Cd, Br)-90 °in the cubic *Fm-3m* symmetry (no. 225).



**Figure S15.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Cd, I)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S16.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Be, F)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S17.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Be, Cl)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S18.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Be, Br)-90 °in the cubic *Fm-3m* symmetry (no. 225).



**Figure S19.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Be, I)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S20.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Mg, F)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S21.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Mg, Cl)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S22.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Mg, Br)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S23.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Mg, I)-90 °in the cubic *Fm-3m* symmetry (no. 225).



**Figure S24.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Ca, F)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S25.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Ca, Cl)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S26.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Ca, Br)-90 °in the cubic *Fm-3m* symmetry (no. 225).



**Figure S27.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Ca, I)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S28.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Sr, F)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S29.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Sr, Cl)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S30.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Sr, Br)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S31.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Sr, I)-90 ° in the cubic *Fm-3m* symmetry (no. 225).


**Figure S32.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Ba, F)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S33.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Ba, Cl)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S34.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Ba, Br)-90 ° in the cubic *Fm-3m* symmetry (no. 225).



**Figure S35.** The calculated total density of states (TDOS) and partial density of states (PDOS) for (Ba, I)-90 ° in the cubic *Fm-3m* symmetry (no. 225).

| Materials     | Atomic site | HC (e) | ВОР              |
|---------------|-------------|--------|------------------|
| (Zn, H)-0 °   | Zn (M)      | 0.43   | 0.25-0.29 (Zn-O) |
|               | 01          | -0.35  | 0.25 (O1-Zn)     |
|               | O2          | -0.22  | 0.29 (O2-Zn)     |
|               | C1          | 0.18   | 0.91 (C1-O2)     |
|               |             |        | 0.83 (C1-C2)     |
|               | C2          | -0.01  | 1.08 (C2-C3)     |
|               | C3          | -0.03  | 1.10 (C3-C3)     |
|               | H (Z)       | 0.05   | 0.89 (H-C3)      |
| (Zn, F)-90 °  | Zn (M)      | 0.42   | 0.25-0.27 (Zn-O) |
|               | 01          | -0.34  | 0.25 (O1-Zn)     |
|               | O2          | -0.22  | 0.27 (O2-Zn)     |
|               | C1          | 0.18   | 0.93 (C1-O2)     |
|               |             |        | 0.76 (C1-C2)     |
|               | C2          | -0.04  | 1.12 (C2-C3)     |
|               | C3          | 0.07   | 1.12 (C3-C3)     |
|               | F (Z)       | -0.08  | 0.47 (F-C3)      |
| (Zn, Cl)-90 ° | Zn (M)      | 0.42   | 0.25-0.28 (Zn-O) |
|               | 01          | -0.34  | 0.25 (O1-Zn)     |
|               | O2          | -0.23  | 0.28 (O2-Zn)     |
|               | C1          | 0.16   | 0.93 (C1-O2)     |
|               |             |        | 0.78 (C1-C2)     |
|               | C2          | -0.03  | 1.10 (C2-C3)     |
|               | C3          | 0.00   | 1.13 (C3-C3)     |
|               | Cl (Z)      | 0.02   | 0.59 (Cl-C3)     |
| (Zn, Br)-90°  | Zn (M)      | 0.42   | 0.26-0.29 (Zn-O) |
|               | 01          | -0.34  | 0.26 (O1-Zn)     |
|               | O2          | -0.23  | 0.29 (O2-Zn)     |
|               | C1          | 0.16   | 0.93 (C1-O2)     |
|               |             |        | 0.80 (C1-C2)     |
|               | C2          | -0.02  | 1.15 (C2-C3)     |
|               | C3          | -0.01  | 1.15 (C3-C3)     |
|               | Br (Z)      | 0.03   | 0.48 (Br-C3)     |
| (Zn, I)-90°   | Zn (M)      | 0.44   | 0.28 (Zn-O)      |
|               | O1          | -0.37  | 0.28 (O1-Zn)     |
|               | O2          | -0.22  | 0.28 (O2-Zn)     |
|               | C1          | 0.16   | 0.93 (C1-O2)     |
|               |             |        | 0.81 (C1-C2)     |
|               | C2          | -0.02  | 1.14 (C2-C3)     |
|               | C3          | -0.03  | 1.15 (C3-C3)     |
|               | I (Z)       | 0.06   | 0.47 (I-C3)      |

Table S2. The calculated Hirschfeld charge (HC, given in terms of e), bond overlap populations (BOP) for (Zn, Z)-90° (Z = F, Cl, Br, and I) as well as pristine MOF-5, i.e., (Zn, H)-0°. Note that the atomic labels of atoms are numbered according to Figure 1.

|              | <b>A</b> . |      |          | 1    | <b>T</b> ( 1 | (1)        |
|--------------|------------|------|----------|------|--------------|------------|
| Materials    | Atom       | S    | <i>p</i> | d    | Total        | Charge (e) |
| (Zn, H)-0 °  | Zn (M)     | 0.39 | 0.35     | 9.97 | 10.71        | 1.29       |
|              | 01         | 1.88 | 5.19     | 0.00 | 7.07         | -1.07      |
|              | O2         | 1.80 | 4.84     | 0.00 | 6.64         | -0.64      |
|              | C1         | 0.94 | 2.45     | 0.00 | 3.39         | 0.61       |
|              | C2         | 1.10 | 2.96     | 0.00 | 4.06         | -0.06      |
|              | C3         | 1.18 | 3.08     | 0.00 | 4.26         | -0.26      |
|              | H (Z)      | 0.72 | 0.00     | 0.00 | 0.72         | 0.28       |
| (Zn, F)-90 ° | Zn (M)     | 0.43 | 0.34     | 9.97 | 10.74        | 1.26       |
|              | 01         | 1.88 | 5.19     | 0.00 | 7.07         | -1.07      |
|              | O2         | 1.80 | 4.81     | 0.00 | 6.62         | -0.62      |
|              | C1         | 0.92 | 2.44     | 0.00 | 3.37         | 0.63       |
|              | C2         | 1.06 | 3.04     | 0.00 | 4.10         | -0.10      |
|              | C3         | 0.98 | 2.67     | 0.00 | 3.65         | 0.35       |
|              | F (Z)      | 1.93 | 5.40     | 0.00 | 7.33         | -0.33      |
| (Zn, Cl)-90° | Zn (M)     | 0.43 | 0.35     | 9.97 | 10.75        | 1.25       |
|              | 01         | 1.88 | 5.19     | 0.00 | 7.07         | -1.07      |
|              | O2         | 1.80 | 4.81     | 0.00 | 6.61         | -0.61      |
|              | C1         | 0.93 | 2.45     | 0.00 | 3.37         | 0.63       |
|              | C2         | 1.06 | 2.96     | 0.00 | 4.02         | -0.02      |
|              | C3         | 1.10 | 2.93     | 0.00 | 4.03         | -0.03      |
|              | Cl (Z)     | 1.90 | 5.09     | 0.00 | 6.99         | 0.01       |
| (Zn, Br)-90° | Zn (M)     | 0.46 | 0.42     | 9.97 | 10.85        | 1.15       |
|              | 01         | 1.88 | 5.16     | 0.00 | 7.04         | -1.04      |
|              | O2         | 1.80 | 4.80     | 0.00 | 6.60         | -0.60      |
|              | C1         | 0.93 | 2.46     | 0.00 | 3.40         | 0.60       |
|              | C2         | 1.07 | 2.96     | 0.00 | 4.03         | -0.03      |
|              | C3         | 1.14 | 2.96     | 0.00 | 4.10         | -0.10      |
|              | Br (Z)     | 1.87 | 5.01     | 0.00 | 6.88         | 0.12       |
| (Zn, I)-90°  | Zn (M)     | 0.47 | 0.43     | 9.97 | 10.87        | 1.13       |
|              | 01         | 1.89 | 5.10     | 0.00 | 6.99         | -0.99      |
|              | O2         | 1.80 | 4.81     | 0.00 | 6.61         | -0.61      |
|              | C1         | 0.94 | 2.47     | 0.00 | 3.40         | 0.60       |
|              | C2         | 1.07 | 2.95     | 0.00 | 4.02         | -0.02      |
|              | C3         | 1.17 | 3.02     | 0.00 | 4.18         | -0.18      |
|              | I (Z)      | 1.86 | 4.93     | 0.00 | 6.79         | 0.21       |

**Table S3.** The electron configurations of atoms for  $(Zn, Z)-90^{\circ}$  (Z = F, Cl, Br, and I) as well as pristine MOF-5, i.e., (Zn, H)-0° from atomic populations (Mulliken) with CASTEP code. Note that the atomic labels of atoms are numbered according to Figure 1.

| Materials     | Atomic site | HC (e) | BOP              |
|---------------|-------------|--------|------------------|
| (Cd, H)-0 °   | Cd (M)      | 0.55   | 0.21-0.22 (Cd-O) |
|               | 01          | -0.40  | 0.21 (O1-Cd)     |
|               | O2          | -0.25  | 0.22 (O2-Cd)     |
|               | C1          | 0.17   | 0.91 (C1-O2)     |
|               |             |        | 0.83 (C1-C2)     |
|               | C2          | -0.01  | 1.08 (C2-C3)     |
|               | C3          | -0.04  | 1.10 (C3-C3)     |
|               | H(Z)        | 0.04   | 0.89 (H-C3)      |
| (Cd, F)-90 °  | Cd (M)      | 0.56   | 0.21-0.22 (Cd-O) |
|               | 01          | -0.40  | 0.22 (O1-Cd)     |
|               | O2          | -0.24  | 0.21 (O2-Cd)     |
|               | C1          | 0.17   | 0.92 (C1-O2)     |
|               |             |        | 0.75 (C1-C2)     |
|               | C2          | -0.04  | 1.12 (C2-C3)     |
|               | C3          | 0.07   | 1.13 (C3-C3)     |
|               | F (Z)       | -0.07  | 0.47 (F-C3)      |
| (Cd, Cl)-90 ° | Cd (M)      | 0.56   | 0.21-0.22 (Cd-O) |
|               | 01          | -0.40  | 0.22 (O1-Cd)     |
|               | O2          | -0.24  | 0.21 (O2-Cd)     |
|               | C1          | 0.15   | 0.92 (C1-O2)     |
|               |             |        | 0.77 (C1-C2)     |
|               | C2          | -0.03  | 1.13 (C2-C3)     |
|               | C3          | 0.00   | 1.10 (C3-C3)     |
|               | Cl (Z)      | 0.01   | 0.59 (Cl-C3)     |
| (Cd, Br)-90 ° | Cd (M)      | 0.56   | 0.22-0.23 (Cd-O) |
|               | 01          | -0.40  | 0.23 (O1-Cd)     |
|               | O2          | -0.24  | 0.22 (O2-Cd)     |
|               | C1          | 0.15   | 0.93 (C1-O2)     |
|               |             |        | 0.79 (C1-C2)     |
|               | C2          | -0.03  | 1.14 (C2-C3)     |
|               | C3          | -0.01  | 1.15 (C3-C3)     |
|               | Br (Z)      | 0.03   | 0.50 (Br-C3)     |
| (Cd, I)-90 °  | Cd (M)      | 0.56   | 0.23 (Cd-O)      |
|               | 01          | -0.40  | 0.23 (O1-Cd)     |
|               | O2          | -0.24  | 0.23 (O2-Cd)     |
|               | C1          | 0.14   | 0.92 (C1-O2)     |
|               |             |        | 0.80 (C1-C2)     |
|               | C2          | -0.03  | 1.14 (C2-C3)     |
|               | C3          | -0.03  | 1.15 (C3-C3)     |
|               | I (Z)       | 0.06   | 0.50 (I-C3)      |

**Table S4.** The calculated Hirschfeld charge (HC, given in terms of *e*), bond overlap populations (BOP) for (Cd, Z)-90° (Z = F, Cl, Br, and I) as well as Cd-MOF-5, i.e., (Cd, H)-0°. Note that the atomic labels of atoms are numbered according to Figure 1.

| Materials     | Atom   | S    | р    | d    | Total | Charge (e) |
|---------------|--------|------|------|------|-------|------------|
| (Cd, H)-0 °   | Cd (M) | 0.42 | 0.32 | 9.98 | 10.72 | 1.28       |
|               | 01     | 1.91 | 5.12 | 0.00 | 7.02  | -1.02      |
|               | O2     | 1.80 | 4.83 | 0.00 | 6.63  | -0.63      |
|               | C1     | 0.94 | 2.47 | 0.00 | 3.41  | 0.59       |
|               | C2     | 1.09 | 2.96 | 0.00 | 4.06  | -0.06      |
|               | C3     | 1.18 | 3.09 | 0.00 | 4.27  | -0.27      |
|               | H (Z)  | 0.71 | 0.00 | 0.00 | 0.71  | 0.29       |
| (Cd, F)-90 °  | Cd (M) | 0.45 | 0.32 | 9.98 | 10.76 | 1.24       |
|               | 01     | 1.91 | 5.11 | 0.00 | 7.01  | -1.01      |
|               | O2     | 1.81 | 4.81 | 0.00 | 6.62  | -0.62      |
|               | C1     | 0.91 | 2.44 | 0.00 | 3.35  | 0.65       |
|               | C2     | 1.06 | 3.04 | 0.00 | 4.10  | -0.10      |
|               | C3     | 0.98 | 2.67 | 0.00 | 3.65  | 0.35       |
|               | F(Z)   | 1.93 | 5.41 | 0.00 | 7.33  | -0.33      |
| (Cd, Cl)-90 ° | Cd (M) | 0.45 | 0.33 | 9.98 | 10.76 | 1.24       |
|               | 01     | 1.91 | 5.10 | 0.00 | 7.01  | -1.01      |
|               | O2     | 1.81 | 4.81 | 0.00 | 6.62  | -0.62      |
|               | C1     | 0.92 | 2.44 | 0.00 | 3.36  | 0.64       |
|               | C2     | 1.06 | 2.96 | 0.00 | 4.02  | -0.02      |
|               | C3     | 1.10 | 2.93 | 0.00 | 4.03  | -0.03      |
|               | Cl (Z) | 1.90 | 5.09 | 0.00 | 6.99  | 0.01       |
| (Cd, Br)-90 ° | Cd (M) | 0.48 | 0.39 | 9.98 | 10.85 | 1.15       |
|               | 01     | 1.91 | 5.08 | 0.00 | 6.99  | -0.99      |
|               | O2     | 1.81 | 4.81 | 0.00 | 6.61  | -0.61      |
|               | C1     | 0.92 | 2.46 | 0.00 | 3.38  | 0.62       |
|               | C2     | 1.07 | 2.96 | 0.00 | 4.03  | -0.03      |
|               | C3     | 1.14 | 2.96 | 0.00 | 4.10  | -0.10      |
|               | Br (Z) | 1.88 | 5.01 | 0.00 | 6.89  | 0.11       |
| (Cd, I)-90 °  | Cd (M) | 0.49 | 0.40 | 9.98 | 10.86 | 1.14       |
|               | 01     | 1.91 | 5.08 | 0.00 | 6.99  | -0.99      |
|               | O2     | 1.81 | 4.81 | 0.00 | 6.61  | -0.61      |
|               | C1     | 0.93 | 2.46 | 0.00 | 3.39  | 0.61       |
|               | C2     | 1.07 | 2.95 | 0.00 | 4.02  | -0.02      |
|               | C3     | 1.17 | 3.02 | 0.00 | 4.19  | -0.19      |
|               | I (Z)  | 1.87 | 4.92 | 0.00 | 6.80  | 0.20       |

**Table S5.** The electron configurations of atoms for (Cd, Z)-90° (Z = F, Cl, Br, and I) as well as (Cd, H)-0° from atomic populations (Mulliken) with CASTEP code. Note that the atomic labels of atoms are numbered according to Figure 1.

| Materials       | Atomic site | HC (e) | BOP              |
|-----------------|-------------|--------|------------------|
| (Be, H)-0 °     | Be (M)      | 0.22   | 0.36-0.37 (Be-O) |
|                 | 01          | -0.27  | 0.37 (O1-Be)     |
|                 | O2          | -0.18  | 0.36 (O2-Be)     |
|                 | C1          | 0.21   | 0.92 (C1-O2)     |
|                 |             |        | 0.84 (C1-C2)     |
|                 | C2          | -0.01  | 1.08 (C2-C3)     |
|                 | C3          | -0.03  | 1.10 (C3-C3)     |
|                 | H(Z)        | 0.05   | 0.86 (H-C3)      |
| (Be, F)-90 °    | Be (M)      | 0.09   | 0.35-0.36 (Be-O) |
|                 | 01          | -0.27  | 0.36 (O1-Be)     |
|                 | O2          | -0.18  | 0.35 (O2-Be)     |
|                 | C1          | 0.22   | 0.94 (C1-O2)     |
|                 |             |        | 0.75 (C1-C2)     |
|                 | C2          | -0.03  | 1.11 (C2-C3)     |
|                 | C3          | 0.07   | 1.12 (C3-C3)     |
|                 | F (Z)       | -0.07  | 0.47 (F-C3)      |
| (Be, Cl)-90 °   | Be (M)      | 0.08   | 0.35-0.36 (Be-O) |
|                 | 01          | -0.26  | 0.36 (O1-Be)     |
|                 | O2          | -0.18  | 0.35 (O2-Be)     |
|                 | C1          | 0.20   | 0.94 (C1-O2)     |
|                 |             |        | 0.78 (C1-C2)     |
|                 | C2          | -0.02  | 1.12 (C2-C3)     |
|                 | C3          | 0.01   | 1.09 (C3-C3)     |
|                 | Cl (Z)      | 0.02   | 0.59 (Cl-C3)     |
| (Be, Br)-90 °   | Be (M)      | 0.15   | 0.36-0.37 (Be-O) |
|                 | 01          | -0.28  | 0.37 (O1-Be)     |
|                 | O2          | -0.18  | 0.36 (O2-Be)     |
|                 | C1          | 0.20   | 0.95 (C1-O2)     |
|                 | -           |        | 0.81 (C1-C2)     |
|                 | C2          | -0.02  | 1.14 (C2-C3)     |
|                 | C3          | -0.01  | 1.15 (C3-C3)     |
|                 | Br(Z)       | 0.04   | 0.45 (Br-C3)     |
| (Be. I)-90 °    | Be(M)       | 0.14   | 0.33-0.39 (Be-O) |
| (= •, •, •, • • | 01          | -0.26  | 0.33 (O1-Be)     |
|                 | 02          | -0.19  | 0.39 (O2-Be)     |
|                 | C1          | 0.19   | 0.93(C1-O2)      |
|                 |             | 0.17   | 0.80(C1-C2)      |
|                 | C2          | -0.02  | 1 13 (C2 - C3)   |
|                 | $C_3$       | -0.04  | 1.15(C2-C3)      |
|                 | <u> </u>    | 0.07   |                  |

**Table S6.** The calculated Hirschfeld charge (HC, given in terms of *e*), bond overlap populations (BOP) for (Be, Z)-90° (Z = F, Cl, Br, and I) as well as Be-MOF-5, i.e., (Be, H)-0°. Note that the atomic labels of atoms are numbered according to Figure 1.

| Materials     | Atom   | S    | р    | d    | Total | Charge (e) |
|---------------|--------|------|------|------|-------|------------|
| (Be, H)-0 °   | Be (M) | 2.27 | 0.60 | 0.00 | 2.86  | 1.14       |
|               | 01     | 1.83 | 5.12 | 0.00 | 6.96  | -0.96      |
|               | O2     | 1.79 | 4.84 | 0.00 | 6.63  | -0.63      |
|               | C1     | 0.93 | 2.46 | 0.00 | 3.39  | 0.61       |
|               | C2     | 1.08 | 2.96 | 0.00 | 4.05  | -0.05      |
|               | C3     | 1.18 | 3.08 | 0.00 | 4.26  | -0.26      |
|               | H (Z)  | 0.69 | 0.00 | 0.00 | 0.69  | 0.31       |
| (Be, F)-90 °  | Be (M) | 2.25 | 0.60 | 0.00 | 2.85  | 1.15       |
|               | 01     | 1.83 | 5.18 | 0.00 | 7.00  | -1.00      |
|               | O2     | 1.79 | 4.81 | 0.00 | 6.60  | -0.60      |
|               | C1     | 0.92 | 2.45 | 0.00 | 3.37  | 0.63       |
|               | C2     | 1.06 | 3.03 | 0.00 | 4.09  | -0.09      |
|               | C3     | 0.98 | 2.66 | 0.00 | 3.64  | 0.36       |
|               | F (Z)  | 1.93 | 5.40 | 0.00 | 7.33  | -0.33      |
| (Be, Cl)-90 ° | Be (M) | 2.25 | 0.61 | 0.00 | 2.86  | 1.14       |
|               | 01     | 1.83 | 5.17 | 0.00 | 7.00  | -1.00      |
|               | O2     | 1.79 | 4.80 | 0.00 | 6.60  | -0.60      |
|               | C1     | 0.93 | 2.46 | 0.00 | 3.38  | 0.62       |
|               | C2     | 1.05 | 2.95 | 0.00 | 4.01  | -0.01      |
|               | C3     | 1.09 | 2.93 | 0.00 | 4.02  | -0.02      |
|               | Cl (Z) | 1.90 | 5.09 | 0.00 | 6.99  | 0.01       |
| (Be, Br)-90 ° | Be (M) | 2.27 | 0.67 | 0.00 | 2.94  | 1.06       |
|               | 01     | 1.84 | 5.09 | 0.00 | 6.93  | -0.93      |
|               | O2     | 1.78 | 4.81 | 0.00 | 6.60  | -0.60      |
|               | C1     | 0.94 | 2.47 | 0.00 | 3.41  | 0.59       |
|               | C2     | 1.07 | 2.96 | 0.00 | 4.03  | -0.03      |
|               | C3     | 1.14 | 2.97 | 0.00 | 4.10  | -0.10      |
|               | Br (Z) | 1.85 | 5.01 | 0.00 | 6.86  | 0.14       |
| (Be, I)-90 °  | Be (M) | 2.28 | 0.70 | 0.00 | 2.98  | 1.02       |
|               | 01     | 1.83 | 5.19 | 0.00 | 7.01  | -1.01      |
|               | O2     | 1.79 | 4.79 | 0.00 | 6.58  | -0.58      |
|               | C1     | 0.95 | 2.47 | 0.00 | 3.42  | 0.58       |
|               | C2     | 1.09 | 2.94 | 0.00 | 4.02  | -0.02      |
|               | C3     | 1.17 | 3.02 | 0.00 | 4.19  | -0.19      |
|               | I (Z)  | 1.85 | 4.92 | 0.00 | 6.77  | 0.23       |

**Table S7.** The electron configurations of atoms for (Be, Z)-90° (Z = F, Cl, Br, and I) as well as (Be, H)-0° from atomic populations (Mulliken) with CASTEP code. Note that the atomic labels of atoms are numbered according to Figure 1.

| Materials     | Atomic site | HC (e) | BOP              |
|---------------|-------------|--------|------------------|
| (Mg, H)-0 °   | Mg (M)      | 0.48   | 0.23 (Mg-O)      |
|               | 01          | -0.44  | 0.23 (O1-Mg)     |
|               | O2          | -0.23  | 0.23 (O2-Mg)     |
|               | C1          | 0.19   | 0.91 (C1-O2)     |
|               |             |        | 0.84 (C1-C2)     |
|               | C2          | -0.01  | 1.08 (C2-C3)     |
|               | C3          | -0.03  | 1.11 (C3-C3)     |
|               | H(Z)        | 0.05   | 0.89 (H-C3)      |
| (Mg, F)-90 °  | Mg (M)      | 0.49   | 0.20-0.23 (Mg-O) |
|               | 01          | -0.45  | 0.23 (O1-Mg)     |
|               | O2          | -0.23  | 0.20 (O2-Mg)     |
|               | C1          | 0.20   | 0.94 (C1-O2)     |
|               |             |        | 0.76 (C1-C2)     |
|               | C2          | -0.03  | 1.12 (C2-C3)     |
|               | C3          | 0.07   | 1.12 (C3-C3)     |
|               | F (Z)       | -0.07  | 0.47 (F-C3)      |
| (Mg, Cl)-90 ° | Mg (M)      | 0.48   | 0.20-0.23 (Mg-O) |
|               | 01          | -0.45  | 0.23 (O1-Mg)     |
|               | O2          | -0.23  | 0.20 (O2-Mg)     |
|               | C1          | 0.18   | 0.93 (C1-O2)     |
|               |             |        | 0.78 (C1-C2)     |
|               | C2          | -0.03  | 1.12 (C2-C3)     |
|               | C3          | 0.00   | 1.10 (C3-C3)     |
|               | Cl (Z)      | 0.02   | 0.59 (Cl-C3)     |
| (Mg, Br)-90 ° | Mg (M)      | 0.48   | 0.23 (Mg-O)      |
|               | 01          | -0.45  | 0.23 (O1-Mg)     |
|               | O2          | -0.23  | 0.23 (O2-Mg)     |
|               | C1          | 0.18   | 0.94 (C1-O2)     |
|               |             |        | 0.80 (C1-C2)     |
|               | C2          | -0.02  | 1.14 (C2-C3)     |
|               | C3          | -0.01  | 1.15 (C3-C3)     |
|               | Br (Z)      | 0.04   | 0.48 (Br-C3)     |
| (Mg, I)-90 °  | Mg (M)      | 0.48   | 0.23-0.24 (Mg-O) |
|               | 01          | -0.45  | 0.24 (O1-Mg)     |
|               | O2          | -0.24  | 0.23 (O2-Mg)     |
|               | C1          | 0.17   | 0.94 (C1-O2)     |
|               |             |        | 0.80 (C1-C2)     |
|               | C2          | -0.02  | 1.14 (C2-C3)     |
|               | C3          | -0.03  | 1.15 (C3-C3)     |

0.06

0.48 (I-C3)

I (Z)

**Table S8.** The calculated Hirschfeld charge (HC, given in terms of *e*), bond overlap populations (BOP) for (Mg, Z)-90° (Z = F, Cl, Br, and I) as well as Mg-MOF-5, i.e., (Mg, H)-0°. Note that the atomic labels of atoms are numbered according to Figure 1.

| Materials     | Atom   | S    | р    | d    | Total | Charge (e) |
|---------------|--------|------|------|------|-------|------------|
| (Mg, H)-0 °   | Mg (M) | 0.20 | 6.22 | 0.00 | 6.42  | 1.58       |
|               | 01     | 1.90 | 5.38 | 0.00 | 7.28  | -1.28      |
|               | O2     | 1.80 | 4.91 | 0.00 | 6.71  | -0.71      |
|               | C1     | 0.94 | 2.46 | 0.00 | 3.40  | 0.60       |
|               | C2     | 1.09 | 2.97 | 0.00 | 4.06  | -0.06      |
|               | C3     | 1.18 | 3.08 | 0.00 | 4.26  | -0.26      |
|               | H (Z)  | 0.72 | 0.00 | 0.00 | 0.72  | 0.28       |
| (Mg, F)-90 °  | Mg (M) | 0.28 | 6.18 | 0.00 | 6.46  | 1.54       |
|               | 01     | 1.90 | 5.41 | 0.00 | 7.31  | -1.31      |
|               | O2     | 1.81 | 4.88 | 0.00 | 6.69  | -0.69      |
|               | C1     | 0.92 | 2.45 | 0.00 | 3.37  | 0.63       |
|               | C2     | 1.06 | 3.04 | 0.00 | 4.10  | -0.10      |
|               | C3     | 0.98 | 2.67 | 0.00 | 3.65  | 0.35       |
|               | F (Z)  | 1.93 | 5.41 | 0.00 | 7.33  | -0.33      |
| (Mg, Cl)-90 ° | Mg (M) | 0.28 | 6.19 | 0.00 | 6.47  | 1.53       |
|               | 01     | 1.90 | 5.41 | 0.00 | 7.31  | -1.31      |
|               | O2     | 1.81 | 4.88 | 0.00 | 6.69  | -0.69      |
|               | C1     | 0.93 | 2.45 | 0.00 | 3.38  | 0.62       |
|               | C2     | 1.06 | 2.96 | 0.00 | 4.01  | -0.01      |
|               | C3     | 1.09 | 2.93 | 0.00 | 4.02  | -0.02      |
|               | Cl (Z) | 1.90 | 5.09 | 0.00 | 6.99  | 0.01       |
| (Mg, Br)-90 ° | Mg (M) | 0.28 | 6.28 | 0.00 | 6.56  | 1.44       |
|               | 01     | 1.90 | 5.39 | 0.00 | 7.29  | -1.29      |
|               | O2     | 1.81 | 4.87 | 0.00 | 6.68  | -0.68      |
|               | C1     | 0.93 | 2.47 | 0.00 | 3.40  | 0.60       |
|               | C2     | 1.07 | 2.96 | 0.00 | 4.03  | -0.03      |
|               | C3     | 1.14 | 2.96 | 0.00 | 4.10  | -0.10      |
|               | Br (Z) | 1.87 | 5.01 | 0.00 | 6.88  | 0.12       |
| (Mg, I)-90 °  | Mg (M) | 0.29 | 6.29 | 0.00 | 6.58  | 1.42       |
|               | 01     | 1.90 | 5.38 | 0.00 | 7.28  | -1.28      |
|               | O2     | 1.81 | 4.87 | 0.00 | 6.67  | -0.67      |
|               | C1     | 0.94 | 2.48 | 0.00 | 3.41  | 0.59       |
|               | C2     | 1.07 | 2.95 | 0.00 | 4.02  | -0.02      |
|               | C3     | 1.17 | 3.02 | 0.00 | 4.19  | -0.19      |
|               | I (Z)  | 1.87 | 4.92 | 0.00 | 6.79  | 0.21       |

**Table S9.** The electron configurations of atoms for  $(Mg, Z)-90^{\circ}$  (Z = F, Cl, Br, and I) as well as  $(Mg, H)-0^{\circ}$  from atomic populations (Mulliken) with CASTEP code. Note that the atomic labels of atoms are numbered according to Figure 1.

| Materials     | Atomic site | HC(e) | BOP              |
|---------------|-------------|-------|------------------|
| (Ca, H)-0 °   | Ca (M)      | 0.55  | 0.14-0.18 (Ca-O) |
|               | 01          | -0.48 | 0.18 (O1-Ca)     |
|               | O2          | -0.26 | 0.14 (O2-Ca)     |
|               | C1          | 0.19  | 0.89 (C1-O2)     |
|               |             |       | 0.82 (C1-C2)     |
|               | C2          | -0.01 | 1.07 (C2-C3)     |
|               | C3          | -0.04 | 1.09 (C3-C3)     |
|               | H (Z)       | 0.04  | 0.86 (H-C3)      |
| (Ca, F)-90 °  | Ca (M)      | 0.56  | 0.13-0.18 (Ca-O) |
|               | 01          | -0.48 | 0.18 (O1-Ca)     |
|               | O2          | -0.25 | 0.13 (O2-Ca)     |
|               | C1          | 0.20  | 0.91 (C1-O2)     |
|               |             |       | 0.73 (C1-C2)     |
|               | C2          | -0.04 | 1.11 (C2-C3)     |
|               | C3          | 0.07  | 1.12 (C3-C3)     |
|               | F (Z)       | -0.07 | 0.46 (F-C3)      |
| (Ca, Cl)-90 ° | Ca (M)      | 0.55  | 0.13-0.18 (Ca-O) |
|               | 01          | -0.48 | 0.18 (O1-Ca)     |
|               | O2          | -0.25 | 0.13 (O2-Ca)     |
|               | C1          | 0.18  | 0.91 (C1-O2)     |
|               |             |       | 0.76 (C1-C2)     |
|               | C2          | -0.03 | 1.12 (C2-C3)     |
|               | C3          | 0.00  | 1.10 (C3-C3)     |
|               | Cl (Z)      | 0.02  | 0.58 (Cl-C3)     |
| (Ca, Br)-90 ° | Ca (M)      | 0.54  | 0.14-0.18 (Ca-O) |
|               | O1          | -0.48 | 0.18 (O1-Ca)     |
|               | O2          | -0.25 | 0.14 (O2-Ca)     |
|               | C1          | 0.17  | 0.92 (C1-O2)     |
|               |             |       | 0.78 (C1-C2)     |
|               | C2          | -0.02 | 1.14 (C2-C3)     |
|               | C3          | -0.01 | 1.15 (C3-C3)     |
|               | Br (Z)      | 0.04  | 0.50 (Br-C3)     |
| (Ca, I)-90 °  | Ca (M)      | 0.53  | 0.14-0.18 (Ca-O) |
|               | 01          | -0.48 | 0.18 (O1-Ca)     |
|               | O2          | -0.25 | 0.14 (O2-Ca)     |
|               | C1          | 0.17  | 0.92 (C1-O2)     |
|               |             |       | 0.79 (C1-C2)     |
|               | C2          | -0.02 | 1.14 (C2-C3)     |
|               | C3          | -0.03 | 1.15 (C3-C3)     |
|               | I (Z)       | 0.07  | 0.49 (I-C3)      |

**Table S10.** The calculated Hirschfeld charge (HC, given in terms of *e*), bond overlap populations (BOP) for (Ca, Z)-90° (Z = F, Cl, Br, and I) as well as Ca-MOF-5, i.e., (Ca, H)-0°. Note that the atomic labels of atoms are numbered according to Figure 1.

| Materials     | Atom   | S    | р    | d    | Total | Charge (e) |
|---------------|--------|------|------|------|-------|------------|
| (Ca, H)-0 °   | Ca (M) | 2.13 | 6.00 | 0.53 | 8.65  | 1.35       |
|               | 01     | 1.90 | 5.24 | 0.00 | 7.14  | -1.14      |
|               | O2     | 1.80 | 4.89 | 0.00 | 6.70  | -0.70      |
|               | C1     | 0.92 | 2.43 | 0.00 | 3.34  | 0.66       |
|               | C2     | 1.09 | 2.97 | 0.00 | 4.06  | -0.06      |
|               | C3     | 1.18 | 3.08 | 0.00 | 4.27  | -0.27      |
|               | H (Z)  | 0.69 | 0.00 | 0.00 | 0.69  | 0.31       |
| (Ca, F)-90 °  | Ca (M) | 2.13 | 6.00 | 0.51 | 8.64  | 1.36       |
|               | 01     | 1.91 | 5.25 | 0.00 | 7.15  | -1.15      |
|               | O2     | 1.80 | 4.87 | 0.00 | 6.67  | -0.67      |
|               | C1     | 0.89 | 2.42 | 0.00 | 3.31  | 0.69       |
|               | C2     | 1.06 | 3.04 | 0.00 | 4.10  | -0.10      |
|               | C3     | 0.98 | 2.67 | 0.00 | 3.64  | 0.36       |
|               | F (Z)  | 1.93 | 5.41 | 0.00 | 7.34  | -0.34      |
| (Ca, Cl)-90 ° | Ca (M) | 2.13 | 6.00 | 0.51 | 8.64  | 1.36       |
|               | 01     | 1.91 | 5.25 | 0.00 | 7.15  | -1.15      |
|               | O2     | 1.80 | 4.87 | 0.00 | 6.67  | -0.67      |
|               | C1     | 0.90 | 2.42 | 0.00 | 3.32  | 0.68       |
|               | C2     | 1.06 | 2.96 | 0.00 | 4.01  | -0.01      |
|               | C3     | 1.09 | 2.93 | 0.00 | 4.02  | -0.02      |
|               | Cl (Z) | 1.90 | 5.10 | 0.00 | 7.00  | 0.00       |
| (Ca, Br)-90 ° | Ca (M) | 2.15 | 6.00 | 0.52 | 8.67  | 1.33       |
|               | 01     | 1.90 | 5.24 | 0.00 | 7.15  | -1.15      |
|               | O2     | 1.80 | 4.86 | 0.00 | 6.66  | -0.66      |
|               | C1     | 0.91 | 2.44 | 0.00 | 3.35  | 0.65       |
|               | C2     | 1.07 | 2.96 | 0.00 | 4.03  | -0.03      |
|               | C3     | 1.13 | 2.96 | 0.00 | 4.09  | -0.09      |
|               | Br (Z) | 1.88 | 5.01 | 0.00 | 6.90  | 0.10       |
| (Ca, I)-90 °  | Ca (M) | 2.16 | 6.00 | 0.51 | 8.66  | 1.34       |
|               | 01     | 1.90 | 5.24 | 0.00 | 7.14  | -1.14      |
|               | O2     | 1.80 | 4.86 | 0.00 | 6.66  | -0.66      |
|               | C1     | 0.92 | 2.45 | 0.00 | 3.36  | 0.64       |
|               | C2     | 1.07 | 2.95 | 0.00 | 4.03  | -0.03      |
|               | C3     | 1.16 | 3.01 | 0.00 | 4.18  | -0.18      |
|               | I(Z)   | 1.89 | 4.93 | 0.00 | 6.82  | 0.18       |

**Table S11.** The electron configurations of atoms for (Ca, Z)-90° (Z = F, Cl, Br, and I) as well as (Ca, H)-0° from atomic populations (Mulliken) with CASTEP code. Note that the atomic labels of atoms are numbered according to Figure 1.

| Materials     | Atomic site | HC ( <i>e</i> ) | BOP              |
|---------------|-------------|-----------------|------------------|
| (Sr, H)-0 °   | Sr (M)      | 0.64            | 0.14-0.17 (Sr-O) |
|               | 01          | -0.52           | 0.17 (O1-Sr)     |
|               | O2          | -0.27           | 0.14 (O2-Sr)     |
|               | C1          | 0.18            | 0.89 (C1-O2)     |
|               |             |                 | 0.81 (C1-C2)     |
|               | C2          | -0.01           | 1.08 (C2-C3)     |
|               | C3          | -0.04           | 1.09 (C3-C3)     |
|               | H (Z)       | 0.04            | 0.86 (H-C3)      |
| (Sr, F)-90 °  | Sr (M)      | 0.65            | 0.12-0.18 (Sr-O) |
|               | 01          | -0.53           | 0.18 (O1-Sr)     |
|               | O2          | -0.26           | 0.12 (O2-Sr)     |
|               | C1          | 0.19            | 0.92 (C1-O2)     |
|               |             |                 | 0.73 (C1-C2)     |
|               | C2          | -0.04           | 1.11 (C2-C3)     |
|               | C3          | 0.06            | 1.12 (C3-C3)     |
|               | F (Z)       | -0.08           | 0.46 (F-C3)      |
| (Sr, Cl)-90 ° | Sr (M)      | 0.63            | 0.12-0.18 (Sr-O) |
|               | 01          | -0.53           | 0.18 (O1-Sr)     |
|               | O2          | -0.27           | 0.12 (O2-Sr)     |
|               | C1          | 0.17            | 0.91 (C1-O2)     |
|               |             |                 | 0.76 (C1-C2)     |
|               | C2          | -0.03           | 1.12(C2-C3)      |

Table S12. The calculated Hirschfeld charge (HC, given in terms of e), bond overlap populations (BOP) for (Sr, Z)-90° (Z = F, Cl, Br, and I) as well as Sr-MOF-5, i.e., (Sr, H)-0°. Note that the atomic labels of at

|               | I (Z)  | 0.07  | 0.50 (I-C3)      |
|---------------|--------|-------|------------------|
|               | C3     | -0.03 | 1.15 (C3-C3)     |
|               | C2     | -0.03 | 1.14 (C2-C3)     |
|               |        |       | 0.78 (C1-C2)     |
|               | C1     | 0.16  | 0.92 (C1-O2)     |
|               | O2     | -0.27 | 0.14 (O2-Sr)     |
|               | O1     | -0.53 | 0.18 (O1-Sr)     |
| (Sr, I)-90 °  | Sr (M) | 0.60  | 0.14-0.18 (Sr-O) |
|               | Br (Z) | 0.03  | 0.50 (Br-C3)     |
|               | C3     | -0.01 | 1.15 (C3-C3)     |
|               | C2     | -0.03 | 1.14 (C2-C3)     |
|               |        |       | 0.78 (C1-C2)     |
|               | C1     | 0.16  | 0.92 (C1-O2)     |
|               | O2     | -0.27 | 0.13 (O2-Sr)     |
|               | 01     | -0.53 | 0.18 (O1-Sr)     |
| (Sr, Br)-90 ° | Sr (M) | 0.62  | 0.13-0.18 (Sr-O) |
|               | Cl (Z) | 0.01  | 0.58 (Cl-C3)     |
|               | C3     | 0.00  | 1.10 (C3-C3)     |
|               | C2     | -0.03 | 1.12 (C2-C3)     |
|               |        |       | 0.76 (C1-C2)     |
|               | C1     | 0.17  | 0.91 (C1-O2)     |
|               | O2     | -0.27 | 0.12 (O2-Sr)     |

| Materials     | Atom   | S    | р    | d    | Total | Charge (e) |
|---------------|--------|------|------|------|-------|------------|
| (Sr, H)-0 °   | Sr (M) | 2.11 | 5.99 | 0.51 | 8.61  | 1.39       |
|               | 01     | 1.90 | 5.24 | 0.00 | 7.14  | -1.14      |
|               | O2     | 1.80 | 4.89 | 0.00 | 6.70  | -0.70      |
|               | C1     | 0.92 | 2.44 | 0.00 | 3.36  | 0.64       |
|               | C2     | 1.09 | 2.97 | 0.00 | 4.06  | -0.06      |
|               | C3     | 1.18 | 3.08 | 0.00 | 4.27  | -0.27      |
|               | H (Z)  | 0.69 | 0.00 | 0.00 | 0.69  | 0.31       |
| (Sr, F)-90 °  | Sr (M) | 2.11 | 5.99 | 0.49 | 8.60  | 1.40       |
|               | 01     | 1.91 | 5.24 | 0.00 | 7.15  | -1.15      |
|               | O2     | 1.81 | 4.86 | 0.00 | 6.67  | -0.67      |
|               | C1     | 0.90 | 2.43 | 0.00 | 3.33  | 0.67       |
|               | C2     | 1.06 | 3.04 | 0.00 | 4.10  | -0.10      |
|               | C3     | 0.98 | 2.67 | 0.00 | 3.65  | 0.35       |
|               | F (Z)  | 1.93 | 5.41 | 0.00 | 7.34  | -0.34      |
| (Sr, Cl)-90 ° | Sr (M) | 2.11 | 5.99 | 0.50 | 8.60  | 1.40       |
|               | 01     | 1.91 | 5.24 | 0.00 | 7.15  | -1.15      |
|               | O2     | 1.81 | 4.86 | 0.00 | 6.67  | -0.67      |
|               | C1     | 0.90 | 2.43 | 0.00 | 3.34  | 0.66       |
|               | C2     | 1.06 | 2.96 | 0.00 | 4.02  | -0.02      |
|               | C3     | 1.09 | 2.93 | 0.00 | 4.02  | -0.02      |
|               | Cl (Z) | 1.90 | 5.10 | 0.00 | 7.00  | 0.00       |
| (Sr, Br)-90 ° | Sr (M) | 2.13 | 5.99 | 0.51 | 8.64  | 1.36       |
|               | 01     | 1.91 | 5.24 | 0.00 | 7.14  | -1.14      |
|               | O2     | 1.81 | 4.86 | 0.00 | 6.66  | -0.66      |
|               | C1     | 0.92 | 2.45 | 0.00 | 3.36  | 0.64       |
|               | C2     | 1.07 | 2.96 | 0.00 | 4.03  | -0.03      |
|               | C3     | 1.14 | 2.96 | 0.00 | 4.09  | -0.09      |
|               | Br (Z) | 1.89 | 5.02 | 0.00 | 6.91  | 0.09       |
| (Sr, I)-90 °  | Sr (M) | 2.13 | 5.99 | 0.51 | 8.64  | 1.36       |
|               | 01     | 1.91 | 5.23 | 0.00 | 7.14  | -1.14      |
|               | O2     | 1.81 | 4.85 | 0.00 | 6.66  | -0.66      |
|               | C1     | 0.92 | 2.45 | 0.00 | 3.38  | 0.62       |
|               | C2     | 1.07 | 2.95 | 0.00 | 4.03  | -0.03      |
|               | C3     | 1.17 | 3.01 | 0.00 | 4.18  | -0.18      |
|               | I (Z)  | 1.89 | 4.93 | 0.00 | 6.82  | 0.18       |

**Table S13.** The electron configurations of atoms for  $(Sr, Z)-90^{\circ}$  (Z = F, Cl, Br, and I) as well as  $(Sr, H)-0^{\circ}$  from atomic populations (Mulliken) with CASTEP code. Note that the atomic labels of atoms are numbered according to Figure 1.

| Materials     | Atomic site | HC (e) | BOP              |
|---------------|-------------|--------|------------------|
| (Ba, H)-0 °   | Ba (M)      | 0.53   | 0.11-0.16 (Ba-O) |
|               | 01          | -0.54  | 0.16 (O1-Ba)     |
|               | O2          | -0.28  | 0.11 (O2-Ba)     |
|               | C1          | 0.18   | 0.89 (C1-O2)     |
|               |             |        | 0.81 (C1-C2)     |
|               | C2          | -0.01  | 1.08 (C2-C3)     |
|               | C3          | -0.04  | 1.09 (C3-C3)     |
|               | H (Z)       | 0.04   | 0.86 (H-C3)      |
| (Ba, F)-90 °  | Ba (M)      | 0.55   | 0.10-0.16 (Ba-O) |
|               | 01          | -0.54  | 0.16 (O1-Ba)     |
|               | O2          | -0.27  | 0.10 (O2-Ba)     |
|               | C1          | 0.18   | 0.91 (C1-O2)     |
|               |             |        | 0.72 (C1-C2)     |
|               | C2          | -0.04  | 1.11 (C2-C3)     |
|               | C3          | 0.06   | 1.12 (C3-C3)     |
|               | F (Z)       | -0.08  | 0.46 (F-C3)      |
| (Ba, Cl)-90 ° | Ba (M)      | 0.52   | 0.10-0.16 (Ba-O) |
|               | 01          | -0.54  | 0.16 (O1-Ba)     |
|               | O2          | -0.27  | 0.10 (O2-Ba)     |
|               | C1          | 0.16   | 0.91 (C1-O2)     |
|               |             |        | 0.75 (C1-C2)     |
|               | C2          | -0.03  | 1.12 (C2-C3)     |
|               | C3          | 0.00   | 1.10 (C3-C3)     |
|               | Cl (Z)      | 0.01   | 0.58 (Cl-C3)     |
| (Ba, Br)-90 ° | Ba (M)      | 0.51   | 0.11-0.16 (Ba-O) |
|               | 01          | -0.54  | 0.16 (O1-Ba)     |
|               | O2          | -0.27  | 0.11 (O2-Ba)     |
|               | C1          | 0.16   | 0.92 (C1-O2)     |
|               |             |        | 0.77 (C1-C2)     |
|               | C2          | -0.03  | 1.14 (C2-C3)     |
|               | C3          | -0.01  | 1.15 (C3-C3)     |
|               | Br (Z)      | 0.03   | 0.50 (Br-C3)     |
| (Ba, I)-90 °  | Ba (M)      | 0.48   | 0.11-0.15 (Ba-O) |
|               | 01          | -0.54  | 0.15 (O1-Ba)     |
|               | O2          | -0.27  | 0.11 (O2-Ba)     |
|               | C1          | 0.15   | 0.92 (C1-O2)     |
|               |             |        | 0.78 (C1-C2)     |
|               | C2          | -0.02  | 1.14 (C2-C3)     |
|               | C3          | -0.03  | 1.15 (C3-C3)     |
|               | I (Z)       | 0.06   | 0.50 (I-C3)      |

**Table S14.** The calculated Hirschfeld charge (HC, given in terms of *e*), bond overlap populations (BOP) for (Ba, Z)-90° (Z = F, Cl, Br, and I) as well as Ba-MOF-5, i.e., (Ba, H)-0°. Note that the atomic labels of atoms are numbered according to Figure 1.

| Materials     | Atom   | S    | р    | d    | Total | Charge (e) |
|---------------|--------|------|------|------|-------|------------|
| (Ba, H)-0 °   | Ba (M) | 2.08 | 5.98 | 0.57 | 8.64  | 1.36       |
|               | 01     | 1.91 | 5.17 | 0.00 | 7.08  | -1.08      |
|               | O2     | 1.81 | 4.89 | 0.00 | 6.69  | -0.69      |
|               | C1     | 0.92 | 2.44 | 0.00 | 3.36  | 0.64       |
|               | C2     | 1.09 | 2.96 | 0.00 | 4.06  | -0.06      |
|               | C3     | 1.18 | 3.09 | 0.00 | 4.27  | -0.27      |
|               | H (Z)  | 0.70 | 0.00 | 0.00 | 0.70  | 0.30       |
| (Ba, F)-90 °  | Ba (M) | 2.08 | 5.99 | 0.54 | 8.61  | 1.39       |
|               | 01     | 1.92 | 5.18 | 0.00 | 7.09  | -1.09      |
|               | O2     | 1.81 | 4.86 | 0.00 | 6.67  | -0.67      |
|               | C1     | 0.90 | 2.43 | 0.00 | 3.33  | 0.67       |
|               | C2     | 1.06 | 3.04 | 0.00 | 4.10  | -0.10      |
|               | C3     | 0.98 | 2.67 | 0.00 | 3.65  | 0.35       |
|               | F (Z)  | 1.93 | 5.42 | 0.00 | 7.34  | -0.34      |
| (Ba, Cl)-90 ° | Ba (M) | 2.08 | 5.99 | 0.54 | 8.62  | 1.38       |
|               | 01     | 1.92 | 5.18 | 0.00 | 7.09  | -1.09      |
|               | O2     | 1.81 | 4.86 | 0.00 | 6.67  | -0.67      |
|               | C1     | 0.90 | 2.43 | 0.00 | 3.33  | 0.67       |
|               | C2     | 1.06 | 2.96 | 0.00 | 4.02  | -0.02      |
|               | C3     | 1.09 | 2.93 | 0.00 | 4.02  | -0.02      |
|               | Cl (Z) | 1.90 | 5.10 | 0.00 | 7.01  | -0.01      |
| (Ba, Br)-90 ° | Ba (M) | 2.10 | 5.99 | 0.55 | 8.64  | 1.36       |
|               | 01     | 1.92 | 5.17 | 0.00 | 7.09  | -1.09      |
|               | O2     | 1.81 | 4.85 | 0.00 | 6.66  | -0.66      |
|               | C1     | 0.91 | 2.45 | 0.00 | 3.36  | 0.64       |
|               | C2     | 1.07 | 2.96 | 0.00 | 4.03  | -0.03      |
|               | C3     | 1.13 | 2.96 | 0.00 | 4.09  | -0.09      |
|               | Br (Z) | 1.89 | 5.02 | 0.00 | 6.91  | 0.09       |
| (Ba, I)-90 °  | Ba (M) | 2.10 | 5.99 | 0.56 | 8.65  | 1.35       |
|               | 01     | 1.91 | 5.17 | 0.00 | 7.09  | -1.09      |
|               | O2     | 1.81 | 4.85 | 0.00 | 6.66  | -0.66      |
|               | C1     | 0.91 | 2.46 | 0.00 | 3.37  | 0.63       |
|               | C2     | 1.08 | 2.95 | 0.00 | 4.03  | -0.03      |
|               | C3     | 1.17 | 3.01 | 0.00 | 4.17  | -0.17      |
|               | I(Z)   | 1.90 | 4.93 | 0.00 | 6.83  | 0.17       |

**Table S15.** The electron configurations of atoms for  $(Ba, Z)-90^{\circ}$  (Z = F, Cl, Br, and I) as well as  $(Ba, H)-0^{\circ}$  from atomic populations (Mulliken) with CASTEP code. Note that the atomic labels of atoms are numbered according to Figure 1.



**Figure S36.** Calculated optical properties for (Cd, Z)-90 °, (Z = F, Cl, Br, I) as well as (Cd, H)-0 °. (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S37.** Calculated optical properties for (Be, Z)-90 °, (Z = F, Cl, Br, I) as well as (Be, H)-0 °. (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_56_Figure_0.jpeg)

**Figure S38.** Calculated optical properties for (Mg, Z)-90 °, (Z = F, Cl, Br, I) as well as (Mg, H)-0 °. (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_57_Figure_0.jpeg)

**Figure S39.** Calculated optical properties for (Ca, Z)-90 °, (Z = F, Cl, Br, I) as well as (Ca, H)-0 °. (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_58_Figure_0.jpeg)

**Figure S40.** Calculated optical properties for (Sr, Z)-90 °, (Z = F, Cl, Br, I) as well as (Sr, H)-0 °. (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_59_Figure_0.jpeg)

**Figure S41.** Calculated optical properties for (Ba, Z)-90 °, (Z = F, Cl, Br, I) as well as (Ba, H)-0 °. (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_60_Figure_0.jpeg)

**Figure S42.** Calculated optical properties for (Zn, F)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_61_Figure_0.jpeg)

**Figure S43.** Calculated optical properties for (Zn, Cl)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_62_Figure_0.jpeg)

**Figure S44.** Calculated optical properties for (Zn, Br)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_63_Figure_0.jpeg)

**Figure S45.** Calculated optical properties for (Zn, I)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_64_Figure_0.jpeg)

**Figure S46.** Calculated optical properties for (Cd, F)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_65_Figure_0.jpeg)

**Figure S47.** Calculated optical properties for (Cd, Cl)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_66_Figure_0.jpeg)

**Figure S48.** Calculated optical properties for (Cd, Br)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_67_Figure_0.jpeg)

**Figure S49.** Calculated optical properties for (Cd, I)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_68_Figure_0.jpeg)

**Figure S50.** Calculated optical properties for (Be, F)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_69_Figure_0.jpeg)

**Figure S51.** Calculated optical properties for (Be, Cl)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_70_Figure_0.jpeg)

**Figure S52.** Calculated optical properties for (Be, Br)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .

![](_page_71_Figure_0.jpeg)

**Figure S53.** Calculated optical properties for (Be, I)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .


**Figure S54.** Calculated optical properties for (Mg, F)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S55.** Calculated optical properties for (Mg, Cl)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S56.** Calculated optical properties for (Mg, Br)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S57.** Calculated optical properties for (Mg, I)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S58.** Calculated optical properties for (Ca, F)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S59.** Calculated optical properties for (Ca, Cl)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S60.** Calculated optical properties for (Ca, Br)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S61.** Calculated optical properties for (Ca, I)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S62.** Calculated optical properties for (Sr, F)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S63.** Calculated optical properties for (Sr, Cl)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S64.** Calculated optical properties for (Sr, Br)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S65.** Calculated optical properties for (Sr, I)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S66.** Calculated optical properties for (Ba, F)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S67.** Calculated optical properties for (Ba, Cl)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S68.** Calculated optical properties for (Ba, Br)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S69.** Calculated optical properties for (Ba, I)-90°: (a) dielectric function  $\varepsilon(\omega)$ , (b) reflectivity R( $\omega$ ), (c) refractive index **n**( $\omega$ ); extinction coefficient **k**( $\omega$ ), (d) optical conductivity  $\sigma(\omega)$ , (e) energy loss function L( $\omega$ ), (f) absorption  $\alpha(\omega)$ .



**Figure S70.** The electronic band structure of (Zn, F)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S71.** The electronic band structure of (Zn, Cl)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S72.** The electronic band structure of (Zn, Br)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S73.** The electronic band structure of (Zn, I)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S74.** The electronic band structure of (Cd, F)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S75.** The electronic band structure of (Cd, Cl)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S76.** The electronic band structure of (Cd, Br)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S77.** The electronic band structure of (Cd, I)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S78.** The electronic band structure of (Be, F)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S79.** The electronic band structure of (Be, Cl)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S80.** The electronic band structure of (Be, Br)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S81.** The electronic band structure of (Be, I)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S82.** The electronic band structure of (Mg, F)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S83.** The electronic band structure of (Mg, Cl)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S84.** The electronic band structure of (Mg, Br)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S85.** The electronic band structure of (Mg, I)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S86.** The electronic band structure of (Ca, F)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S87.** The electronic band structure of (Ca, Cl)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S88.** The electronic band structure of (Ca, Br)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S89.** The electronic band structure of (Ca, I)-90°. The Fermi level is set to zero and placed in the valence band maximum.


**Figure S90.** The electronic band structure of (Sr, F)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S91.** The electronic band structure of (Sr, Cl)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S92.** The electronic band structure of (Sr, Br)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S93.** The electronic band structure of (Sr, I)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S94.** The electronic band structure of (Ba, F)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S95.** The electronic band structure of (Ba, Cl)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S96.** The electronic band structure of (Ba, Br)-90°. The Fermi level is set to zero and placed in the valence band maximum.



**Figure S97.** The electronic band structure of (Ba, I)-90°. The Fermi level is set to zero and placed in the valence band maximum.