Supporting Information for

Dipolar Molecules inside C₇₀; Electric Field-Driven Room-Temperature Single-Molecule Switch

Cina Foroutan-Nejad,*[a] Valery Andrushchenko,[b] Michal Straka*[b]

^[a]CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic. E-mail: cina.foroutannejad@ceitec.muni.cz

^[b] Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám 1, 16610, Prague, CZ, E-mail:straka@uochb.cas.cz

Table S1. Encapsulation energies for conformers **a** and **b** shown in Figure 3 in the absence of an external electric field in kcal/mol.

MX	LiF	LiCl	NaF	NaCl
Conformer (a)	-33.6	-38.6	-35.9	-29.3
Conformer (b)	-33.8	-39.0	-36.4	-29.4

Table S1. Relative energies of the low-energy minima **c**, **d** and corresponding transition states for turning the MX@C₇₀, with respect to the high-energy minima **a** and **b** in kcal/mol. The differences ΔE_{ac} and ΔE_{bd} are defined as $E_a - E_c$ and $E_b - E_d$. Field strength is presented in au and energies in kcal/mol.

	Li	CI@C ₇₀		
EF	ΔE_{ac}	TS_{ac}	ΔE_{bd}	TS_{bd}
0.000	0.4	10.4	-0.4	10.0
0.002	-1.3	9.2	-2.1	9.5
0.004	-3.0	8.2	-3.8	8.9
0.006	-4.7	7.1	-5.4	8.5
0.008	-6.4	6.1	-7.0	8.1
0.010	-8.1	5.1	-8.5	7.7
0.012	-9.8	4.1	-9.9	7.3
0.014	-11.3	3.2	-11.2	7.0

	N	aF@C ₇₀		
EF	ΔE_{ac}	ΔE_{ac}	ΔE_{ac}	ΔE_{ac}
0.000	-0.5	12.5	0.5	13.0
0.002	-2.4	11.3	-1.4	12.4
0.004	-4.3	10.1	-3.2	11.8
0.006	-6.2	9.0	-5.0	11.2
0.008	-8.0	8.0	-6.7	10.7
0.010	-9.9	7.0	-8.3	10.2
0.012	-11.7	6.1	-9.9	9.8
0.014	-13.4	5.3	-11.3	9.5

	Na				
EF	ΔE_{ac}	ΔE_{ac}	ΔE_{ac}	ΔE_{ac}	
0.000	0.1	28.7	-0.1	28.6	
0.002	-2.0	28.0	-2.1	27.3	
0.004	-4.1	27.5	-4.1	26.0	
0.006	-6.2	27.0	-6.1	24.7	
800.0	-8.2	26.5	-8.0	23.6	
0.010	-10.3	26.0	-9.9	22.5	
0.012	-12.3	25.6	-11.6	21.5	
0.014	-14.2	25.1	-13.2	20.7	

MX	LiF	LiCl	NaF	NaCl
Conformer (a)	6.18	6.57	6.63	6.87
Conformer (b)	3.49	3.50	3.19	3.23

Table S3. Dipole moments, μ , for conformers a and b, presented in Figure 3 of the manuscript.

Figure S4. Comparison of calculated infrared (top) and Raman (bottom) spectra of conformers **a(d)** and **b(c)** of NaF@1 (Figure 3) with the EEF set to zero.

Figure S5. Comparison of calculated infrared (top) and Raman (bottom) spectra of conformers **a(d)** and **b(c)** of NaCl@1 (Figure 3) with the EEF set to zero.