Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Page 1 of 14

1 **SUPPORTING INFORMATION**

2

In the supplementary section we present the figures and tables that are necessary to understand with more detail the studied mechanism. It contains the coordinates for full model used, and the structure of the stationary points discussed in the paper; Relevant interatomic distances for the optimized structures with the B3LYP/6-31G(d):FF99SB level of theory, changes involved in the charge distribution along the reaction path for the DFT layer (B3LYP/6-311+G(2d,2p):FF99SB level theory).

9

Figure S1. General scheme of the set of reactions that occur inside human FAS (see introduction
section for details).

- 13
- 14
- 15

Figure S2. (Left) Surface representation of the KR human domain with catalytic residues (light
 green sticks representation), KAC substrate (green stick and ball representation) and GSK2194069
 inhibitor¹⁰ (blue stick and ball representation). (Right) KAC alignment (green) with the inhibitor
 (blue) (Ser and Tyr light green color).

Page 3 of 14

20
21
22
23
24
25
26
27
28
29

Figure S3. (Left) Full model used for the ONIOM calculations, the image includes: hKR (cartoon representation), water molecules within 6 Å around of catalytic domains, NADPH, PNS and KAC (spheres and sticks representations). (Right) The three conformations in the QM layer.

Page 4 of 14

30	Table S1. Comparison of the activation electronic energies with the water nearby Lys1995
31	included either in the QM layer or the MM layer, in kcal·mol ⁻¹ .

	Т	S1	Ι		
	H ₂ O in MM	H ₂ O in QM	H ₂ O in MM	H ₂ O in QM	
Conf-1	27.7	31.3	27.3	22.8	
Conf-2	16.6	13.9	3.2	-1.1	
Conf-3	14.8	14.0	-7.7	-7.8	

32

Table S2. Single point energies (kcal·mol⁻¹) determined for the stationary structures with five
 different DFT functional and the 6-311+G(2d,2p) basis set.

	B3LYP	M06-2X	ω B97XD	MPW1K	MPWB1K
React	0.0	0.0	0.0	0.0	0.0
TS1	16.0	15.2	15.8	18.2	18.6
Ι	-5.8	-8.1	-7.2	-4.9	-5.7
TS2	-4.4	-6.4	-4.1	-2.6	-3.1
Р	-12.8	-14.3	-12.0	-12.0	-13.4

37 38 39 Figure S4. Representation of the most relevant distances in the QM-layer. 40

Table S3. NBO bond orders for the QM layer in React, TS1 and I states. The electronic population 41 values are determined at B3LYP/6-311+G(2d,2p) level. 42

	R	React		281	I		
	H _{Cre}	H _{Tyr2034-OH}	H _{Cre}	H _{Tyr2034-OH}	H _{Cre}	H _{Tyr2034-OH}	
C _{re}	0.2249	0.0000	0.1104	0.0000	0.0007	0.0000	
C_{β}	0.0003	0.0000	0.1101	0.0000	0.2282	0.0000	
C _β -oxygen	0.0000	0.0180	0.0000	0.0485	0.0000	0.1612	
Tyr ₂₀₃₄ - oxygen	0.0000	0.1590	0.0000	0.1308	0.0000	0.0194	

43

Table S4. Continuation of the Table 1. Distances (Å) for the optimized stationary points in the 44

PESs (B3LYP/6-31G(d):FF99SB). 45

Coordinate	React	TS1	Ι	TS2	Р
<i>r</i> 11	3.08	3.08	3.16	2.83	2.13
r12	1.85	1.83	1.80	1.90	2.09
<i>r</i> 13	1.03	1.04	1.04	1.03	1.02
<i>r</i> 14	0.98	0.98	0.98	0.97	0.98

Page 6 of 14

Figure S5. Electronic energy profile for the two stages observed in the reduction of KAC to HAC: (orange) electronic energy calculated at B3LYP/6-311+G(2d,2p) level theory and (gray) electronic energy at B3LYP/6-31G(d) level theory.

Figure S6. (Left) IRC obtained for the TS1. (Right) IRC obtained for the TS2. Both calculations
 were performed at the B3LYP/6-31G(d):FF99SB level.

58 The reaction paths followed by IRC calculations, show that both the stationary states and the 59 energy barrier are very similar to those obtained in the study of the PESs for the catalytic mechanism ($\Delta E \sim 2$ kcal mol⁻¹ relatively to the PES results). However, the I states coming from 60 61 TS1 and the TS2 have different energy values (which differ in 0.5 kcal mol⁻¹). We explored the differences between these: the IRC of the TS1 leads to the formation of a I structure with a 62 negatively charged Tyr2034 (Figure S7); the IRC of the TS2 results in a I state where the Tyr2034 63 64 is already protonated by the C_2 -hydroxyl of ribose (Figure S7). We studied the PES that 65 interchanges the proton of the C₂-hydroxyl with Tyr2034 for both states. The results indicate that the energy difference in the proton transfer for both PES is ~ 0.16 kcal mol⁻¹. Moreover, we 66 67 confirmed through an rmsd analysis that the DFT layers only differ in the position of this proton either in Tyr2034 or the C_2 of ribose (0.11 Å). Thus, we confirm that these differences in the IRC 68 69 results do not affect the overall mechanism proposed.

Figure S7. Aligned structures for the I. The black atoms represent the structure of the IRC from 72 TS1 and the gray atoms that of the TS2. The transparent red circle shows the hydrogen atoms that 73 are interchanged in the I state. 74

XYZ coordinates of the QM layer from optimized structures 75

77	re	act.xyz			ts	1.xyz		
78	С	5.155	6.115	-0.351	С	5.154	6.140	-0.372
79	Н	5.963	6.673	-0.830	Н	5.957	6.700	-0.859
80	Н	5.252	6.236	0.732	Н	5.262	6.262	0.710
81	С	5.263	4.641	-0.742	С	5.262	4.668	-0.763
82	Н	4.935	4.484	-1.771	Н	4.917	4.507	-1.787
83	Н	6.289	4.288	-0.650	Н	6.290	4.320	-0.686
84	Ν	4.438	3.742	0.125	Ν	4.456	3.769	0.122
85	Η	3.442	4.025	0.140	Н	3.453	4.025	0.131
86	Н	4.407	2.764	-0.255	Н	4.463	2.784	-0.227
87	Н	4.813	3.727	1.089	Н	4.836	3.787	1.085
88	С	9.523	0.178	3.053	С	9.528	0.347	3.213
89	Н	8.804	-0.061	2.264	Н	8.798	0.325	2.397
90	Н	9.635	1.275	3.077	Н	9.785	1.414	3.379
91	0	10.799	-0.401	2.805	0	10.679	-0.410	2.905
92	Н	10.759	-0.919	1.982	Н	10.647	-0.626	1.937
93	С	11.221	5.831	-0.746	С	11.257	6.012	-0.756
94	Н	11.196	6.100	-1.809	Н	11.234	6.309	-1.810
95	Н	12.277	5.696	-0.505	Н	12.311	5.861	-0.516
96	С	10.508	4.514	-0.553	С	10.526	4.704	-0.591
97	С	9.247	4.259	-1.113	С	9.272	4.476	-1.174
98	Н	8.726	5.052	-1.648	Н	8.779	5.278	-1.723
99	С	8.664	2.993	-1.045	С	8.661	3.224	-1.107
100	Н	7.703	2.784	-1.500	Н	7.710	3.035	-1.593
101	С	9.342	1.937	-0.421	С	9.298	2.150	-0.464
102	0	8.736	0.713	-0.422	0	8.675	0.948	-0.444
103	H	9.374	-0.018	-0.207	Н	9.333	0.179	-0.141
104	С	10.586	2.172	0.175	С	10.550	2.362	0.134
105	Н	11.10/	1.366	0.682	Н	11.060	1.533	0.610
100	С	11.145	3.449	0.100	С	11.135	3.625	0.066
10/	H	12.125	3.616	0.539	Н	12.116	3.//0	0.512
100	U T	7.192	5.541	4.044	U T	1.223	5.591	4.013
109	н	8.238	5.827	4.204	н	8.268	5.8/8	4.1//
110	п	6.070	4.909	4.920	п	0.900	5.009	4.003
111	C	6.99Z	4.01/	2.836	C	7.UZ3 E 000	4.680	2.010
112	U	5.839	4.282	2.508	U	J.889 0 165	4.319	2.490
113	IN TT	0.127	4.115	2.300	IN	0.100	4.227	1 220
114	п u	0.00Z	J. 10. /	1.419 0.215	п	0.090	J.133 1 017	1.330 2.202
115	п С	0.939 6 201	4./33 _2 125	2.343 1 619	п С	0.904 6 015	4.04/ _1 QQ/	2.202 1 311
117		0.391 5 060	-Z.ISS _1 554	1.01Z		6 504	-1.004	2 005
11/	п	0.000	-1.004	2.309	н	0.004	-1.200	2.000

118	С	7.478	-2.862	1.884	С	8.064	-2.539	1.476
119	Н	7.855	-2.888	2.899	Н	8.597	-2.490	2.414
120	С	8.170	-3.702	0.847	С	8.554	-3.376	0.407
121	Н	9.221	-3.402	0.737	Н	9.642	-2.726	-0.094
122	Н	8.240	-4.739	1.202	Н	9.142	-4.247	0.676
123	С	7.449	-3.659	-0.493	С	7.660	-3.566	-0.728
124	С	6.342	-2.904	-0.673	С	6.519	-2.823	-0.831
125	Н	5.789	-2.893	-1.605	Н	5.816	-2.914	-1.651
126	С	8.041	-4.544	-1.536	С	8.106	-4.622	-1.698
127	0	9.112	-5.133	-1.248	0	9.119	-5.281	-1.386
128	Ν	7.461	-4.715	-2.745	Ν	7.422	-4.834	-2.831
129	Н	7.872	-5.500	-3.254	Н	7.762	-5.661	-3.329
130	Н	6.593	-4.315	-3.131	Н	6.601	-4.347	-3.224
131	Ν	5.803	-2.111	0.340	Ν	6.159	-1.943	0.170
132	С	4.836	-1.092	0.032	С	5.049	-1.011	-0.029
133	Н	4.596	-0.573	0.972	Н	4.846	-0.544	0.945
134	С	5.315	-0.035	-0.996	С	5.379	0.096	-1.061
135	Н	5.952	-0.531	-1.736	Н	6.003	-0.344	-1.850
136	С	4.031	0.385	-1.694	С	4.013	0.411	-1.662
137	Н	4.191	0.640	-2.740	Н	4.082	0.676	-2.714
138	0	3.470	1.523	-1.017	0	3.421	1.499	-0.938
139	Н	2.743	1.826	-1.595	Н	2.706	1.829	-1.515
140	0	5.980	1.070	-0.410	0	5.984	1.234	-0.497
141	Н	6.920	0.826	-0.297	Н	6.958	1.077	-0.438
142	0	3.680	-1.689	-0.533	0	3.935	-1.708	-0.522
143	С	3.128	-0.838	-1.548	С	3.219	-0.881	-1.467
144	Н	2.137	-0.495	-1.219	Н	2.243	-0.625	-1.033
145	0	10.561	-1.221	0.107	0	10.299	-0.783	0.311
146	С	11.063	-1.959	-0.749	С	10.556	-1.838	-0.434
147	С	10.584	-2.006	-2.163	С	10.277	-1.714	-1.926
148	Н	9.772	-1.299	-2.343	Н	9.283	-1.293	-2.105
149	Н	11.438	-1.794	-2.819	Н	11.031	-1.048	-2.358
150	Н	10.243	-3.028	-2.377	Н	10.345	-2.687	-2.422
151	С	12.259	-2.809	-0.385	С	11.829	-2.606	-0.058
152	Н	12.184	-3.127	0.658	Н	11.791	-2.882	1.001
153	Н	12.299	-3.697	-1.026	Н	11.877	-3.535	-0.641
154	С	13.559	-1.992	-0.611	С	13.123	-1.810	-0.329
155	0	13.733	-1.305	-1.605	0	13.289	-1.086	-1.296
156	C	16.106	-1.181	0.052	С	15.757	-1.154	0.153
157	H	15.846	-0.123	0.094	Н	15.541	-0.087	0.210
158	Н	16.243	-1.470	-0.998	Н	15.811	-1.441	-0.906
159	S	14.710	-2.175	0.704	S	14.373	-2.101	0.895
160								
161	in	t.xyz			ts	2.xyz		
162	С	5.147	6.163	-0.299	С	5.251	6.181	-0.272
163	Н	5.949	6.728	-0.783	Н	6.012	6.831	-0.716
164	Н	5.252	6.286	0.783	Н	5.327	6.274	0.817
165	С	5.272	4.693	-0.691	С	5.529	4.742	-0.709
166	Н	4.923	4.525	-1.712	Н	5.266	4.603	-1.761
167	Н	6.308	4.366	-0.620	Н	6.595	4.549	-0.611

168	Ν	4.491	3.778	0.201	Ν	4.846	3.678	0.077
169	Н	3.475	3.973	0.177	Н	3.825	3.732	-0.006
170	Н	4.584	2.790	-0.116	Н	5.234	2.571	-0.233
171	Н	4.850	3.840	1.173	Н	5.079	3.778	1.076
172	С	9.557	0.201	3.138	С	9.567	0.190	3.166
173	Н	8.834	0.259	2.318	Н	8.834	0.153	2.355
174	Н	9.926	1.235	3.293	Н	9.823	1.258	3.302
175	0	10.619	-0.693	2.852	0	10.728	-0.570	2.876
l /6	Н	10.704	-0.795	1.876	Н	10.727	-0.819	1.926
1//	C	11.137	5.972	-0.685	С	11.285	5.863	-0.650
1/8 170	H	11.097	6.258	-1.743	H	11.316	6.148	-1.708
1/9 190	H	12.196	5.807	-0.467	H	12.323	5.69/	-0.355
100	C	10.390	4.676	-0.479	C	10.513	4.375	-0.500
101		9.149	4.42U 5.100	-1.076		9.200	4.373 E 166	-1.143 1 764
182	п	0.0//	2 1 0 0	-1.003	п	0.000	2.160	-1.021
187	U U	0.Jlo 7 583	2 982	-0.950	U U	0.J90 7 655	3.107	-1.031
185	п	9 105	2.902	-1.404	п	9.0JJ	2.003	-1.341
186	0	2.105 8.515	0 927	-0 132	0	8 129	0 9/5	-0 118
187	U Ц	9 764	-0.263	-0.068	U Н	9 745	-0 489	-0 107
188	C II	10 367	2 372	0.000		10 363	2 282	0.107
189	н	10.877	1 563	0.874	н	10.805	1 458	0.902
190	C	10.972	3 618	0 240	C	11 035	3 499	0.232
191	н	11,953	3,774	0.688	н	12.008	3.612	0.705
192	C	7.185	5.583	4.116	C	7.279	5.548	4.209
193	H	8.231	5.871	4.265	H	8.319	5.860	4.355
194	Н	6.881	5.001	4.990	Н	6.985	4.977	5.094
195	С	6.966	4.676	2.917	С	7.086	4.611	3.030
196	0	5.820	4.323	2.616	0	5.960	4.250	2.692
197	Ν	8.081	4.223	2.306	Ν	8.232	4.127	2.473
198	Н	8.014	3.720	1.424	Н	8.159	3.624	1.596
199	Н	8.901	4.827	2.362	Н	9.023	4.774	2.493
200	С	6.856	-1.858	1.376	С	6.569	-1.714	1.335
201	Н	6.507	-1.131	2.092	Н	6.172	-1.004	2.043
202	С	7.994	-2.618	1.552	С	7.591	-2.590	1.633
203	Н	8.602	-2.507	2.439	Н	8.035	-2.600	2.618
204	С	8.346	-3.515	0.553	С	8.007	-3.472	0.646
205	Н	10.046	-2.413	-1.137	Н	10.099	-2.734	-0.916
206	Н	9.231	-4.129	0.642	Н	8.808	-4.174	0.830
207	С	7.579	-3.645	-0.613	С	7.405	-3.485	-0.622
208	С	6.433	-2.874	-0.738	С	6.354	-2.603	-0.863
209	H	5.755	-2.914	-1.584	Н	5./89	-2.572	-1./89
210	C	8.089	-4.662	-1.620	C	7.982	-4.525	-1.582
211	0	9.088	-5.319	-1.284	0	8.995	-5.134	-1.196
212	IN II	7.453	-4.820	-2.784	N	7.381	-4./64	-2.141
215	H	7.814	-3.626	-3.304	H	7.779	-5.572	-3.23/
214	п	6.032	-4.333	-3.102	П N	5 976	-4.290	-3.109
215		0.10/ 1 986	-2.004 -1 016	0.200		7.2/0 7 8/2	-1./34 -0 777	-U U83
210	U U	ч. 900 Д 7ЛЛ	-0 613	1 050	U U	7.043 1 610	-U 310	0.00Z
218	п С	τ./ττ 5 Δ16	0.043	-0 887	п С	5 112	0.340 N 291	-1 072
219	н	6.115	-0.306	-1.626	Ч	5.578	-0.041	-1.977
/	11	~· + +	0.000			0.070	0.011	±•2,1

C	1 1 0 1	0 100	1 616	C	2 610	0 700	1 100
C	4.101	0.420	-1.010	C	5.040	0.709	-1.420
Η	4.283	0.653	-2.665	Н	3.547	1.262	-2.361
0	3.475	1.544	-0.986	0	3.071	1.426	-0.323
Η	2.775	1.830	-1.606	Н	2.550	2.184	-0.641
0	5.963	1.196	-0.214	0	5.873	1.428	-0.556
Н	6.992	1.096	-0.195	Н	7.442	1.103	-0.334
0	3.923	-1.720	-0.524	0	3.761	-1.507	-0.564
С	3.254	-0.839	-1.468	С	3.006	-0.672	-1.498
Н	2.285	-0.557	-1.037	Н	1.994	-0.584	-1.093
0	10.548	-0.850	0.121	0	10.533	-1.010	0.149
С	10.840	-1.658	-1.025	С	10.849	-1.933	-0.913
С	10.860	-0.810	-2.297	С	10.808	-1.228	-2.267
Н	9.874	-0.356	-2.449	Н	9.799	-0.837	-2.455
Н	11.606	-0.017	-2.232	Н	11.524	-0.407	-2.307
Н	11.092	-1.427	-3.172	Н	11.048	-1.932	-3.072
С	12.120	-2.465	-0.737	С	12.174	-2.626	-0.566
Н	11.991	-2.985	0.219	Н	12.073	-3.098	0.419
Н	12.200	-3.238	-1.513	Н	12.310	-3.441	-1.290
С	13.448	-1.710	-0.754	С	13.453	-1.788	-0.612
0	13.791	-1.005	-1.691	0	13.718	-1.016	-1.521
С	15.987	-1.105	0.054	С	16.007	-1.137	0.132
Н	15.786	-0.035	0.112	Н	15.773	-0.076	0.215
Н	16.121	-1.370	-1.002	Н	16.141	-1.380	-0.930
S	14.510	-2.024	0.636	S	14.577	-2.120	0.720

prod.xyz

C	5.213	6.231	-0.298
Н	5.999	6.845	-0.752
Н	5.283	6.339	0.790
С	5.400	4.762	-0.696
Н	5.231	4.653	-1.773
Н	6.438	4.487	-0.503
Ν	4.552	3.781	0.012
Н	3.562	4.042	-0.101
Н	5.334	2.039	-0.248
Н	4.750	3.840	1.014
С	9.597	0.138	3.114
Н	8.867	0.094	2.300
Н	9.879	1.202	3.221
0	10.733	-0.670	2.860
Н	10.781	-0.886	1.904
С	11.308	5.899	-0.653
Н	11.324	6.184	-1.712
Н	12.351	5.749	-0.370
С	10.561	4.598	-0.501
С	9.282	4.413	-1.040
Н	8.789	5.232	-1.560
С	8.630	3.183	-0.949
Н	7.648	3.043	-1.386
С	9.248	2.103	-0.310
0	8.615	0.889	-0.198

272	Н	9.883	-0.556	-0.163
273	С	10.535	2.253	0.214
274	Н	11.034	1.403	0.666
275	С	11.167	3.493	0.117
276	Н	12.171	3.601	0.518
277	С	7.272	5.552	4.193
278	Н	8.309	5.868	4.352
279	Н	6.971	4.977	5.074
280	С	7.099	4.616	3.008
281	0	5.991	4.229	2.656
282	Ν	8.267	4.156	2.458
283	Н	8.190	3.696	1.557
284	Н	9.027	4.840	2.474
285	С	6.597	-1.833	1.338
286	Н	6.186	-1.140	2.055
287	С	7.675	-2.650	1.606
288	Н	8.152	-2.628	2.576
289	С	8.106	-3.513	0.608
290	Н	10.221	-2.821	-0.952
291	Н	8.946	-4.173	0.769
292	С	7.466	-3.563	-0.640
293	С	6.365	-2.740	-0.855
294	Н	5.770	-2.738	-1.763
295	С	8.048	-4.582	-1.614
296	0	9.061	-5.196	-1.238
297	Ν	7.444	-4.793	-2.783
298	Н	7.830	-5.601	-3.283
299	Н	6.617	-4.323	-3.189
300	Ν	5.974	-1.889	0.137
301	С	4.818	-0.967	-0.050
302	Н	4.603	-0.555	0.943
303	С	5.079	0.207	-1.019
304	Н	5.565	-0.169	-1.927
305	С	3.619	0.566	-1.329
306	Н	3.502	1.171	-2.231
307	0	3.010	1.166	-0.191
308	Н	3.238	2.114	-0.162
309	0	5.878	1.226	-0.456
310	Н	7.648	1.015	-0.364
311	0	3.754	-1.691	-0.570
312	С	2.988	-0.811	-1.459
313	Н	1.978	-0.747	-1.051
314	0	10.657	-1.090	0.104
315	С	10.969	-2.017	-0.958
316	С	10.915	-1.318	-2.314
317	Η	9.905	-0.931	-2.500
318	Η	11.630	-0.496	-2.364
319	Η	11.151	-2.026	-3.117
320	С	12.301	-2.697	-0.617
321	Н	12.204	-3.187	0.359
322	Н	12.453	-3.496	-1.354
323	С	13.562	-1.831	-0.640

0	13.812	-1.031	-1.528
С	16.096	-1.141	0.138
Н	15.833	-0.088	0.233
Н	16.250	-1.365	-0.925
S	14.682	-2.167	0.692
	O C H S	O 13.812 C 16.096 H 15.833 H 16.250 S 14.682	O 13.812 -1.031 C 16.096 -1.141 H 15.833 -0.088 H 16.250 -1.365 S 14.682 -2.167

TOC

333 We study the chemical reaction involved in the human β -ketoreductase domain. It was studied 334 with the hybrid QM/MM methodology.

