Supplementary Information

Gd³⁺-Gd³⁺ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance

Jessica A. Clayton,^{a,b} Mian Qi,^c Adelheid Godt,^c Daniella Goldfarb,^d Songi Han,^{b,e,f} and Mark S. Sherwin^{a,b}

^aDepartment of Physics, University of California, Santa Barbara, Santa Barbara, USA, E-mail: sherwin@physics.ucsb.edu

^bInstitute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA.

^cFaculty of Chemistry and Center for Molecular Materials (CM₂), Bielefeld University, Bielefeld, Germany.

^dDepartment of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel.

^eDepartment of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA.

^fDepartment of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA.

Content

- 1. Sample details
- 2. CW EPR spectra of Gd-4-iodo-PyMTA and corresponding simulation at 240 GHz and 30 K
- 3. 240 GHz CW EPR spectra of Gd-4-iodo-PyMTA and the Gd-rulers at 215 K and 288 K
- 4. W-band echo-detected EPR of Gd-4-iodo-PyMTA and Gd-rulers at 10 K
- 5. CW EPR spectra of Gd-DOTAM and Gd-NO3Pic (Gd-TPATCN) at 240 GHz and 30 K
- 6. Syntheses of Gd-4-iodo-PyMTA and Gd-rulers $\mathbf{2}_1$ and $\mathbf{2}_2$
- 7. NMR spectra

1. Sample details

Compound	Content of stock solution in D ₂ O	рН
Gd-4-iodo-PyMTA	3 mM Gd-4-iodo-PyMTA, 5 mM F ₃ CCO ₂ H/F ₃ CCO ₂ Na, 15 mM NaCl, 120 mM H ₂ O	7
1 ₀	4 mM 1 ₀ , 48 mM NaCl, 148 mM H ₂ O	5
1 ₁	5 mM 1 ₁ , 37 mM NaCl, 100 mM H ₂ O	8
2 ₁	5 mM 2 ₁ , 0.5 mM F ₃ CCO ₂ H/F ₃ CCO ₂ Na, 30 mM NaCl, 180 mM H ₂ O	7
1 ₃	5 mM 1 ₃ , 28 mM NaCl, 100 mM H ₂ O	8
2 ₂	5 mM 2 ₂ , 30 mM NaCl, 100 mM H ₂ O	8
3	5 mM 3 , 32 mM NaCl, 122 mM H ₂ O	

Table S1. Details of the content of stock solutions of Gd-4-iodo-PyMTA and Gd-rulers 1_n , 2_n , and **3** used to prepare samples for CW-EPR experiments, including pH and the concentrations of additional compounds left over as a result of the synthesis.

Gd-rulers T (K)	3	1 ₀	1 ₁	2 ₁	1 ₃	2 ₂
173	1.17 nm	1.42 nm	2.09 nm	3.00 nm	3.41 nm	4.30 nm
215	1.16 nm	1.42 nm	2.08 nm	2.98 nm	3.39 nm	4.27 nm
288	1.16 nm	1.41 nm	2.07 nm	2.96 nm	3.36 nm	4.22 nm

Table S2. Calculated most probable Gd-Gd distances of the Gd-rulers at 173 K, 215 K, and 288 K using the worm-like chain model, as described in the supplementary information of Ref. 48 in the main text. For the measurements at 30 K, the shape of the Gd-rulers became frozen at the glass transition temperature of the mixture of D_2O and glycerol-d₈ (60:40, v:v), which is 173 K. Therefore, the most probably Gd-Gd distances of Gd-rulers at 173 K were calculated for the measurements at 30 K.

2. CW EPR spectra of Gd-4-iodo-PyMTA at 240 GHz and 30 K and corresponding simulation

Figure S1. CW EPR spectrum of the central transition of Gd-4-iodo-PyMTA in D₂O/glycerol-d₈ measured at 30 K (dashed green) and simulated spectrum (dotted orange). The simulation consists of an S = 1/2 spin coupled to an S = 7/2 spin at a temperature of 30 K with isotropic *g*-values of 1.992. The approximate lineshape and peak-to-peak linewidth of Gd-4-iodo-PyMTA was reproduced in the simulation by introducing an artificial *g*-strain on the S = 1/2 spin of the form of a Lorentzian distribution of *g*-values centered at g = 1.992 with a FWHM of 0.00028. A small Voigtian convolutional line broadening (0.2 mT Gaussian + 0.5 mT Lorentzian) was additionally included so that the simulated derivative produced a smooth line.

3. 240 GHz CW EPR spectra of Gd-4-iodo-PyMTA and the Gd-rulers at 215 K and 288 K

Figure S2. CW EPR spectra of the central transition of Gd-4-iodo-PyMTA and the Gd-rulers $\mathbf{1}_n$, $\mathbf{2}_n$, and $\mathbf{3}$ in D₂O/glycerol-d₈ measured at 215 K. In all cases, the peak-to-peak linewidth is broader than the corresponding measurements at 30 K, but this does not affect the $1/r^3$ dependence of the peak-to-peak broadening with the Gd-Gd distance (Fig. 3, main text).

Figure S3. CW EPR spectra of the central transition of Gd-4-iodo-PyMTA and the Gd-rulers $\mathbf{1}_n$ and $\mathbf{2}_n$ embedded in glassy trehalose measured at 288 K. Again, the peak-to-peak linewidth is broader at the higher temperature, but this does not affect the $1/r^3$ dependence of the peak-to-peak broadening with the Gd-Gd distance (Fig. 3, main text). Gd-ruler **3** (1.2 nm) was not available at the time of these measurements. For the Gd-rulers $\mathbf{2}_2$ (4.3 nm) and $\mathbf{1}_3$ (3.4 nm) it was not possible to record a CW EPR spectrum with sufficient SNR, as discussed in the main text.

4. W-band echo-detected EPR of Gd-4-iodo-PyMTA and Gd-rulers at 10 K

Stock solutions of Gd-rulers $\mathbf{1}_n$ and $\mathbf{2}_n$ in D₂O (Table S3) were diluted with a 7:3 (volume ratio) mixture of D₂O and glycerol-d₈. W-band measurements were carried out at 10 K using a homebuilt spectrometer, quartz capillaries (0.64 mm i.d., 0.8 mm o.d.), and sample volumes of 2-3 µL. Echo-detected (ED) EPR spectra were recorded using the two pulse echo sequence $\pi/2$ - τ - π - τ - echo with a 30 ns $\pi/2$ pulse, 60 ns the π pulse, and τ = 550 ns. A two-step phase cycling (0, π) was applied over the $\pi/2$ pulse.

Compound	Content of stock solution in D ₂ O	рН
Gd-4-iodo-PyMTA	2 mM Gd-4-iodo-PyMTA, 2 mM F_3CCO_2H and/or F_3CCO_2Na , 6 mM NaCl, 120 mM H_2O	7
1 ₁	5 mM 1 ₁ , 37 mM NaCl	8
2 ₁	1 mM 2 ₁ , 0.1 mM F ₃ CCO ₂ H/F ₃ CCO ₂ Na, 6 mM NaCl	7
1 ₃	5 mM 1 ₃ , 28 mM NaCl	8
2 ₂	5 mM 2 ₂ , 30 mM NaCl	8
1 ₅	5 mM 1 ₅, 38 mM NaCl	8
1 ₇	5 mM 1 ₇ , 30 mM NaCl	8
1 ₉	2 mM 1 ₉ , 20 mM NaCl	8
1 ₁₁	2 mM 1 ₁₁ , 20 mM NaCl	8

Table S3. Details of the content of stock solutions of Gd-4-iodo-PyMTA and Gd-rulers $\mathbf{1}_n$ and $\mathbf{2}_n$ used to prepare samples for W-band EDEPR experiments, including pH and concentrations of additional compounds present as a result of the synthesis.

Figure S4. (A) Echo-detected EPR spectra of Gd-rulers in $D_2O/glycerol-d_8$ measured at W-band and 10 K. (B) Peak-to-peak linewidths taken from the derivative of the EDEPR spectra plotted as a function of the most probable Gd-Gd distance *r*. The relationship is linear in $1/r^3$ for the shorter Gd-rulers. For interspin distances of 4.3 nm and above the linewidth is indiscernible from the peak-to-peak linewidth of Gd-4-iodo-PyMTA (FWHM ~ 1.6 mT).

5. CW EPR spectra of Gd-DOTAM and Gd-NO3Pic (Gd-TPATCN) at 240 GHz and 30 K

Figure S5. Top: Structural formulae of Gd-DOTAM and Gd-NO3Pic. Bottom: CW EPR spectra of the central transition of (A) Gd-DOTAM and (B) Gd-NO3Pic (Gd-TPATCN) in D_2O /glycerol-d₈ measured at 240 GHz and 30 K. Gd-DOTAM has a peak-to-peak linewidth of ~ 0.53 mT and Gd-NO3Pic has a peak-to-peak linewidth of ~ 0.45 mT.

6. Synthesis of Gd-4-iodo-PyMTA and Gd-rulers 2₁ and 2₂.

General

Unless otherwise stated, reactions were performed in dried glassware under argon using the Schlenk technique and commercial solvents and reagents, except THF (HPLC grade) which was distilled from sodium/benzophenone prior to use. $PdCl_2(PPh_3)_2$ was synthesized according to the literature,¹ however using 2.1 times the given amount of methanol. For the preparation of the aqueous solutions, deionized water was used. The argon was passed through anhydrous CaCl₂ prior to use. The solvents used for extraction and chromatography were of technical grade and were distilled prior to their use. The proton-exchange resin (Dowex 50WX4 hydrogen form, 91 g) was subsequently washed with THF (3 × 200 mL), EtOH (2 × 100 mL), H₂O (2 × 150 mL), and EtOH (200 mL) and then dried over P_4O_{10} at 0.05 mbar for 5 days to obtain a pure and dry proton exchange resin (30 g).

The temperature given for the reactions refers to the bath temperature. Solvents were removed at a bath temperature of ~40 °C and reduced pressure. The products were dried at room temperature at ~0.05 mbar. The pH/pD values of the solutions were determined using pH indicator strips (resolution: 0.3 pH).

Column chromatography was carried out on silica gel 60 (0.035–0.070 mm) applying slight pressure. In the procedures reported below, the size of the column is given as diameter × length. The material was loaded onto the column dissolved in a small quantity of the eluent. Thin layer chromatography was performed on silica gel 60 containing fluorescent indicator F254. The solid support for the silica gel layer was aluminum foil. Unless otherwise stated, the spots were detected with UV light of λ = 254 and 366 nm. The compositions of solvent mixtures are given in volume ratios.

For centrifugation, a centrifuge with a relative centrifugal force of 4000g was used.

NMR spectra were calibrated using the solvent signal as an internal standard [CDCl₃: δ (¹H) = 7.25, δ (¹³C{¹H}) = 77.0; CD₂Cl₂: δ (¹H) = 5.32, δ (¹³C{¹H}) = 53.8; CD₃OD: δ (¹H) = 3.31, δ (¹³C{¹H}) = 49.0]. Signal assignments are supported by DEPT-135, COSY, HMBC, and HMQC experiments.

Accurate MS experiments were performed using an FT-ICR mass spectrometer interfaced to an external ESI ion source. Unless otherwise stated, the monoisotopic mass of a compound is reported.

The ratio of the components in a mixture was determined by ¹H NMR spectroscopy and is given as molar ratio.

Synthesis of Gd-4-iodo-PyMTA

The reaction was performed under ambient atmosphere. A solution of GdCl₃ • 6 H₂O in D₂O (50 mM, 222 μ L, 11.1 μ mol) was added to a solution of 4-iodo-PyMTA • n TFA² in D₂O (46.7 mM, 250 μ L, 11.7 μ mol). Then a solution of NaOD in D₂O (100 mM, 350 μ L, 35 μ mol) was added to rise the

pH of the solution to pH 7. 514 μ L of the solution were diluted with D₂O to a total volume of 1000 μ L to obtain a 3.0 mM solution of Gd-4-iodo-PyMTA in D₂O containing NaCl and Na(O₂CCF₃). MS (ESI) *m*/*z* = 648.8 [M - Na]⁻. Accurate MS (ESI): *m*/*z* calcd. for [M - Na]⁻ C₁₅H₁₄N₃O₈IGd⁻: 648.90721; found 648.90803.

Syntheses of the Gd-rulers 2₁ and 2₂

The final step in the spacer assembly was the oxidative alkyne dimerization (Glaser coupling) to obtain the butadiynes **8** and **14**. As we learned during the project, under the conditions of this reaction, i.e. in case of simultaneous presence of copper ions and oxygen, the aminomethyl substituent at the pyridine is converted to a formyl group.³ This side reaction is slow and only a trace of the corresponding product was detected to accompany the butadiyne **8**. This was removed through chromatography.

In the experiment in which butadiyne **14** was obtained, the reaction mixture was poor in oxygen because an alkynyl-aryl cross coupling reaction had been intended. Furthermore, the reaction mixture was treated with metal ion scavenger before it was exposed to air. For the reason of the treatment with metal scavenger, see our publication on other Gd-rulers.³ ¹H NMR spectra give no indication that the above mentioned side reaction had occured.

For the assembly of Gd-ruler 2_1 the *tert*-butyl ester of 4-iodo-PyMTA was used and hydrolysed through treatment with trifluoroacetic acid. Nowadays, we would use either the ethyl ester or hydrolyze the *tert*-butyl ester under basic conditions² because trifluoroacetic acid harms the spacer backbone in a way not yet identified.³

Synthesis of Gd-ruler 21

TMS protected alkyne 5. The procedure reported for a structurally closely related compound³ (oligoPPE **18**₁ in reference 3) was applied. A solution of alkyne **4**³ (436 mg, 704 μ mol) and 4-iodo-PyMTA *tert*-butyl ester (462 mg, 642 μ mol) in THF (8 mL) and piperidine (3.5 mL) was degassed

through three freeze-pump-thaw cycles. The solution was brought to room temperature. Then, PdCl₂(PPh₃)₂ (3.25 mg, 4.63 µmol) and CuI (1.99 mg, 10.5 µmol) were added, and the reaction mixture was stirred at room temperature. Shortly after the addition of the catalysts, a colorless precipitate formed. After stirring at room temperature for 20 h, 2-methylbut-3-yn-2-ol (18.7 µL, 193 µmol) was added, and the suspension was stirred at room temperature for another 22 h. All volatiles were evaporated. The components of the residual mixture of a yellow viscous liquid and a colorless solid were separated by column chromatography (3.5 cm × 35 cm). Eluting first with pentane/Et₂O 2:1 gave butadiyne **6** (117 mg, 27%; R_f (pentane/Et₂O 2:1) = 0.95; R_f (pentane/Et₂O 1:1) = 0.97). Then, the eluent was changed to pentane/Et₂O 1:1, and trimethylsilyl (TMS) protected alkyne **5** (593 mg, 70%; R_f (pentane/Et₂O 2:1) = 0.35; R_f (pentane/Et₂O 2:1) = 0.78) was obtained as a yellow viscous liquid. Analytical data of TMS protected alkyne 5: ¹H NMR (500 MHz, CD₂Cl₂): δ = 7.55 (s, 2H, H_{pvridine}), 7.27 and 7.21 (2s, 1H each, H_{benzene}), 4.82 and 4.78 (2s, 2H each, benzene-OCH₂), 3.97 (s, 4H, pyridine-CH₂), 3.45 (s, 8H, CH₂CO₂^tBu), 1.45 (s, 36H, ^tBu), 1.056 and 1.050 (2s, 21H each, TIPS), 0.26 (s, 19H, TMS). ¹³C NMR (125 MHz, CD₂Cl₂): δ = 170.7 (C=O), 159.6 (CpyridineCH₂), 153.0 and 152.9 (CbenzeneO), 132.3 (CpyridineC=C), 123.1 (CpyridineH), 119.6 and 119.4 (C_{benzene}H), 115.2 and 113.8 (<u>C_{benzene}C=C</u>), 102.0, 101.9, 101.2, 100.7, 93.4, 90.7, 90.4, and 89.2 (<u>C</u>=<u>C</u>), 81.2 (O<u>C</u>Me₃), 60.0 (*pyridine*-<u>C</u>H₂), 58.4 and 58.3 (*benzene*-O<u>C</u>H₂), 56.1 (CH₂CO₂^tBu), 28.3 (OCMe₃), 18.71 and 18.70 (CHMe₂), 11.49 and 11.48 (CHMe₂), 0.0 (SiMe₃). MS (ESI): *m*/*z* = 1210.7 [M + H]⁺, 1232.7 [M + Na]⁺, 1248.6 [M + K]⁺. Elemental analysis calcd. (%) for C₆₈H₁₀₇N₃O₁₀Si₃: C, 67.45; H, 8.91; N, 3.47; found: C, 66.97; H, 9.09; N, 3.53. Analytical data of butadiyne **6**: ¹H NMR (500 MHz, CD₂Cl₂): δ = 7.23 and 7.19 (2s, 2H each, H_{Ar}), 4.80 and 4.76 (2s, 4H each, CH₂), 1.06 and 1.05 (2s, 42H each, TIPS), 0.25 (s, 18H, TMS). MS (ESI): m/z = 1258.0 [M + Na]+.

Alkyne 7. A solution of n-butyllithium in hexanes (1.6 M, 80 µL, 128 µmol) was slowly added to a solution of TMS protected alkyne 5 (393 mg, 325 µmol) in MeOH (8.0 mL) at room temperature. After stirring for 1 h at room temperature the yellow reaction solution was added to a mixture of Et_2O (10 mL) and H_2O (8 mL). The organic phase was separated and the aqueous phase was extracted with Et_2O (2 × 5 mL). To the combined organic phases H_2O (5 mL) and then MeOH (5 mL) were added and the phases were separated. Removal of the solvents from the organic phase gave an orange viscous oil (401 mg). Column chromatography (2 cm × 9 cm, pentane/Et₂O 1:1) of the orange viscous oil (305 mg) gave alkyne 7 (268 mg, 96%) as a pale yellow oil. ¹H NMR (500 MHz, CD₂Cl₂): *δ* = 7.56 (s, 2H, H_{pvridine}), 7.31 and 7.27 (2s, 1H each, H_{benzene}), 4.83 and 4.80 (2s, 2H each, *benzene*-OCH₂), 3.98 (s, 4H, *pyridine*-CH₂), 3.45 (s, 8H, CH₂CO₂^tBu), 3.41 (s, 1H, C=CH), 1.45 (s, 36H, ^tBu), 1.04 (s, 42H, TIPS). ¹³C NMR (125 MHz, CD₂Cl₂): δ = 170.7 (C=O), 159.6 (<u>C_{pyridine}</u>CH₂), 153.2 and 152.9 (C_{benzene}O), 132.2 (<u>C_{pyridine}</u>C≡C), 123.1 (<u>C_{pyridine}</u>H), 119.8 and 119.2 (C_{benzene}H), 114.2 and 114.0 (C_{benzene}C=C), 101.9, 101.7, 93.4, 90.7, 90.6, 89.0, 83.3 and 79.7 (<u>C</u>≡<u>C</u>), 81.1 (O<u>C</u>Me₃), 60.0 (*pyridine*-<u>C</u>H₂), 58.3 (*benzene*-O<u>C</u>H₂), 56.1 (<u>C</u>H₂CO₂^{*i*}Bu), 28.3 (OCMe₃), 18.7 (CHMe₂), 11.5 (CHMe₂). Accurate MS (ESI): m/z calcd. for [M + Na]⁺ $C_{65}H_{99}N_3O_{10}Si_2Na^+$: = 1160.67612; found 1160.67664. Elemental analysis calcd. (%) for C₆₅H₉₉N₃O₁₀Si₂: C, 68.56; H, 8.76; N, 3.69; found: C, 68.38; H, 8.95; N, 3.77.

Butadiyne 8. The reaction was performed under ambient atmosphere in an open reaction flask. A solution of alkyne **7** (246 mg, 216 μmol), PdCl₂(PPh₃)₂ (763 μg, 1.09 μmol), Cul (1.34 mg, 7.03

µmol) in ⁱPr₂NH (1.1 mL) and THF (5 mL) was stirred in air at room temperature for 69 h. A mixture of Et_2O (10 mL) and H_2O (10 mL) was added. The organic phase was separated and the aqueous phase was extracted with Et_2O (3 × 5 mL). The combined organic phases were washed with H_2O (2 × 5 mL) and the solvents were removed. Column chromatography (3 cm × 28 cm, pentane/Et₂O 1:1) of the residual brown oil gave butadiyne 8 (154 mg, 63%). ¹H NMR (500 MHz, CD₂Cl₂): δ = 7.57 (s, 4H, H_{pyridine}), 7.33 and 7.30 (2s, 2H each, H_{benzene}), 4.84 (s, 8H each, benzene-OCH₂), 3.98 (s, 8H, pyridine-CH₂), 3.46 (s, 16H, CH₂CO₂ⁱBu), 1.46 (s, 72H, ⁱBu), 1.06 and 1.04 (2s, 42H each, TIPS). ¹³C NMR (125 MHz, CD₂Cl₂): δ = 170.7 (C=O), 159.7 (<u>C_{pyridine}</u>CH₂), 154.1 and 152.8 (C_{benzene}O), 132.2 (<u>C_{pvridine}C</u>≡C), 123.1 (<u>C_{pvridine}H</u>), 119.8 and 119.1 (C_{benzene}H), 114.9 and 113.6 (<u>C_{benzene}C≡C</u>), 101.9, 101.7, 94.1, 90.9, 89.1, 79.8 and 79.5 (<u>C</u>≡<u>C</u>; the signal at 90.9 ppm has about double the intensity as the other $\underline{C} \equiv \underline{C}$ signals.), 81.2 ($O\underline{C}Me_3$), 60.0 (*pyridine*- $\underline{C}H_2$), 58.4 and 58.3 (benzene-OCH₂), 56.1 (CH₂CO₂^tBu), 28.3 (OCMe₃), 18.7 (CHMe₂), 11.51 and 11.48 (<u>C</u>HMe₂). MS (ESI): *m*/*z* = 2296.6 [M + Na]⁺, 2274.6 [M + H]⁺, 1159.7 [M + 2Na]²⁺, 1148.8 [M + Na + H]²⁺, 1137.8 [M + 2H]²⁺. Accurate MS (ESI): *m*/*z* calcd. for [M + Na]⁺ C₁₃₀H₁₉₆N₆O₂₀Si₄Na⁺: = 2296.34737; found 2296.34948. Elemental analysis calcd. (%) for C₆₅H₉₉N₃O₁₀Si₂: C, 68.62; H, 8.68; N, 3.69; found: C, 68.76; H, 8.96; N, 3.77.

Butadiyne 9. Butadiyne 8 (148 mg, 65 µmol) was dissolved in THF (4 mL). A solution of Bu₄NF in THF (1.0 M, 390 µL, 390 µmol) was added upon which the reaction solution changed its color immediately from yellow to brown. The solution was stirred at room temperature for 30 min. A mixture of CH₂Cl₂ (10 mL) and H₂O (10 mL) was added. The organic phase was separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 3 mL). The combined organic phases were filtered through silica gel (2 cm × 3 cm, rinsing with THF/CH₂Cl₂ 1:4). Solvent removal gave a yellow viscous oil (151 mg) to which PEG-N₃³ (141 mg, 333 μ mol) and then MeOH (10 mL) were added. This solution was degassed through three freeze-pump-thaw cycles. Degassed aqueous solutions of sodium (L)-ascorbate (7.65 mg in 200 µL H₂O, 38.6 µmol) and CuSO₄•5H₂O (1.68 mg in 200 µL H₂O, 6.71 µmol) were added successively. A small amount of precipitate formed upon addition of the sodium (L)-ascorbate solution. The suspension was stirred at room temperature for 12 d. The reaction was monitored using ¹H NMR spectroscopy. Solvent removal from the reaction mixture gave a viscous brown oil. It was dissolved in CH₂Cl₂ (2 mL) and the resulting solution was washed with H_2O (4 × 2 mL). The washing was performed in a centrifuge tube: The CH_2Cl_2 -phase and the aqueous phase were mixed well. Centrifugation of the resulting yellow emulsion at 10 × 10³ rpm for 2 min separated the mixture into two phases, a yellow CH₂Cl₂ phase and a colorless aqueous phase. The aqueous phase was removed with the help of a glass pipette. After washing, the solvent of the CH_2Cl_2 phase was removed giving a mixture (269 mg) of butadiyne 9, PEG-N₃, and TIPS-OH as a brown viscous oil. Analytical data of butadiyne **9**: ¹H NMR (500 MHz, CD₂Cl₂): δ = 7.95 and 7.92 (2s, 2H each, H_{triazole}), 7.55 (s, 4H, H_{pyridine}), 7.26 and 7.25 (2s, 2H each, H_{benzene}), 5.27 and 5.24 (2s, 4H each, *benzene*-OCH₂), 4.51 and 4.49 (2d overlap to a triplett, ${}^{3}J$ = 6.2 Hz, 8H, N_{triazole}CH₂CH), 3.97 (s, 8H, pyridine-CH₂), 3.58 (s, 16H, CH₂CO₂^tBu), 3.58 – 3.41 (m, 96 H, OCH₂CH₂), 3.38 – 3.33 (m, 16H, CHCH₂O), 3.283 and 3.280 (2s, 12H each, OCH₃), 2.47 (m, 4H, CH₂CH₂O), 1.44 (s, 72H, ^{*i*}Bu). MS (ESI): *m/z* = 1672.0 [M + 2H]²⁺, 1683.0 [M + H + Na]²⁺, 1694.0 $[M + 2Na]^{2+}$. Accurate MS (ESI): m/z calcd. for $[M + 2H]^{2+} C_{166}H_{264}N_{18}O_{52}H_2^{2+}$: = 1671.93563; found 1671.93132.

Ruler precursor 10. The reaction was performed under ambient atmosphere. Material (52 mg, containing ca. 12.6 µmol of butadiyne 9) that had been obtained through the desilylation of butadiyne 8 and the reaction of the desilylation product with PEG-N₃ was dissolved in CH_2CI_2 (0.8 mL). To the solution trifluoroacetic acid (TFA) (200 µL, 2.61 mmol) was added and the yellow solution was stirred at room temperature for 4 h. The volatile components were removed at room temperature lowering the pressure down to 10 mbar giving a brown viscous oil (55 mg). The ¹H NMR spectrum of the brown viscous oil showed an incomplete reaction. This brown viscous oil was dissolved in TFA (1 mL) and the solution was stirred at room temperature for 18 h. The volatile components were removed at room temperature lowering the pressure down to 10 mbar giving a brown viscous oil (72 mg). The brown viscous oil was dissolved in D₂O (3 mL). This aqueous solution was washed with Et_2O (4 × 5 mL). Removal of the solvents from the aqueous solution gave a brown viscous oil (51 mg). The brown viscous oil was dissolved in D_2O (3 mL). A solution of NaOD in D_2O (0.1 M, 600 μ L, 60 μ mol) was added. The aqueous solution was washed with CH_2Cl_2 (3 × 5 mL) using the following procedure: The aqueous solution was transferred into a centrifuge tube. CH₂Cl₂ was added and the two phases were mixed well. The resulting emulsion was centrifuged at 5000 rpm for 5 min. The CH₂Cl₂ phase was removed using a syringe. Removal of the solvents from the aqueous phase gave a brown solid (37 mg). The brown solid was suspended in CD₃OD (1 mL) and the undissolved material was removed through centrifugation. Through removal of the solvent from the yellow solution ruler precursor $10 \cdot n \, Na^+ \cdot m \, D^+ \cdot x$ Na(O₂CCF₃) (36 mg, 86% yield) was obtained as a yellow solid. The content of the ruler precursor 10 was determined by quantitative NMR spectroscopy² to be 86.6 wt.%. ¹H NMR (500 MHz, CD₃OD): *δ* = 8.23 (s, 4H, H_{triazole}), 7.37 (s, 4H, H_{pyridine}), 7.39 and 7.34 (2s, 2H each, H_{benzene}), 5.32 and 5.29 (2s, 4H each, *benzene*-OCH₂), 4.57 (d, ${}^{3}J$ = 5.8 Hz, 8H, N_{triazole}CH₂CH), 3.97 (br s, 8H, *pyridine*-CH₂), 3.67 – 3.44 (m, 122H, CH₂CO₂^tBu and OCH₂CH₂), 3.42 – 3.33 (m, 16H, CHCH₂O), 3.292 and 3.289 (2s, 12H each, OCH₃), 2.47 (m, 4H, CHCH₂O).

Gd-ruler 2₁. The reaction was performed under ambient atmosphere. Ruler precursor **10** • n Na⁺ • m D⁺ • x Na(O₂CCF₃) (36 mg, containing 10.8 µmol Ruler precursor **10**) was dissolved in D₂O (0.8 mL). A solution of GdCl₃ • 6 H₂O in D₂O (50 mM, 411 µL, 20.55 µmol) was added. A solution of NaOD in D₂O (0.1 M) was added as much as was needed to rise the pD to 7.0. The solution was diluted with D₂O to a total volume of 2000 µL to obtain a 5.40 mM solution of Gd-ruler **2**₁ in D₂O. 350 µL of this solution was diluted with D₂O to a total volume of 630 µL to obtain a 3.0 mM solution of Gd-ruler **2**₁ in D₂O. The pD value of the solution was ca. 7.0. Accurate MS (ESI) of Gdruler **2**₁: *m/z* calcd. for [M - 2Na]²⁻ C₁₃₄H₁₉₂Gd₂N₁₈O₅₂²⁻: 1600.57130; found 1600.56714.

Synthesis of Gd-ruler 2₂

Butadiyne 14. Butadiyne **14** was not synthesized on purpose but obtained as a side product when preparing compound **13**³ (oligoPPE **20**₂ in reference 3). A solution of alkyne **11** (146 mg, 94 µmol), diiodobenzene **12** (55 mg, 43 µmol), and Pr_2NH (1.5 µL) in THF (6 mL) was degassed through three freeze-pump-thaw cycles. The solution was brought to room temperature. Then PdCl₂(PPh₃)₂ (806 µg, 1.15 µmol) and Cul (341 µg, 1.79 µmol) were added and the reaction mixture was stirred at room temperature for 20 h. Thin layer chromatography (TLC) (CH₂Cl₂/EtOH 10:1) proved the reaction incomplete. PdCl₂(PPh₃)₂ (1.23 mg, 1.60 µmol), Cul (577 µg, 3.03 µmol) and Pr_2NH (610 µL, not degassed) were added and the solution was stirred at room temperature for 44 h. TLC (CH₂Cl₂/EtOH 10:1) proved the reaction incomplete. The solution incomplete. The solution was stirred at room temperature for 44 h. TLC (CH₂Cl₂/EtOH 10:1) proved the reaction incomplete. The solution was stirred at room temperature for 44 h. TLC (CH₂Cl₂/EtOH 10:1) proved the reaction incomplete. The solution was stirred at room temperature for 44 h. TLC (CH₂Cl₂/EtOH 10:1) proved the reaction incomplete. The solution was stirred at 50 °C for 22 h, then cooled to room temperature, upon which some precipitate formed. Under argon all volatiles were evaporated and the residue was dissolved in degassed anhydrous CH₂Cl₂ (10 mL). Metal scavenger QuadraPureTM TU (157 mg) was added and the suspension was stirred at room

temperature for 13 h. Metal scavenger QuadraPure[™] BzA (5 mg) was added to the suspension. No color change of the metal scavenger QuadraPure[™] BzA occurred within 2.5 h of stirring at room temperature, which indicated that there had been no free Cu(I/II) left in solution. The suspension was filtered through a syringe filter (PTFE membrane, 0.45 µm). The solvents of the filtrate were removed. Column chromatography (3.0 cm × 36 cm, CH₂Cl₂/Et₂O/EtOH 10:4:0.5) of the residual yellow-brown oil gave compound **13** (38 mg, 22%; $R_f = 0.33$) as a yellow viscous oil and butadiyne **14** (55 mg, 38%; R_f = 0.59) as a yellow viscous oil. Analytical data of butadiyne **14**: ¹H NMR (500 MHz, CD₂Cl₂): δ = 7.54 (s, 4H, H_{pyridine}), 7.35, 7.32, 7.30, and 7.26 (4s, 2H each, $H_{benzene}$), 4.88, 4.87, and 4.85 (3s, 4H, 8H, and 4H, benzene-OCH₂), 4.15 (q, ³J = 7.2 Hz, 16H, CH₂CH₃), 4.01 (s, 8H, *pyridine*-CH₂), 3.59 (s, 16H, CH₂CO₂Et), 1.26 (t, ³J = 7.2 Hz, 24H, CH₂CH₃), 1.073, 1.056, 1.053, and 1.049 (4s, 42H each, TIPS). ¹³C NMR (125 MHz, CDCl₃): δ = 171.3 (C=O), 159.2 (Covridine CH2), 154.3, 153.1, 152.7, and 152.6 (Cbenzene O), 132.5 (Covridine C=C), 123.4 (C_{pyridine}H), 120.5, 120.0, 119.0, and 118.8 (C_{benzene}H), 115.9, 115.4, 113.8, and 113.1 (C_{benzene}C≡C), 102.04, 101.95. 101.89, 101.71, 93.3, 92.2, 91.8, 90.8, 90.7, 89.6, 79.7, and 79.6 (<u>C</u>≡<u>C</u>), 60.8 (<u>C</u>H₂Me), 60.3 (*pyridine*-<u>C</u>H₂), 58.66, 58.61, 58.37, and 58.35 (*benzene*-O<u>C</u>H₂), 55.2 (CH₂CO₂Et), 18.693 and 18.686 (CH(CH₃)₂), 14.4 (CH₂CH₃), 11.51, 11.49, and 11.47 (CHMe₂). MS (ESI): *m*/*z* = 1568.0 [M + 2Na]²⁺, 1557.0 [M + Na + H]²⁺, 1546.0 [M + 2H]²⁺. Accurate MS (ESI): m/z calcd. for $[M + 2H]^{2+} C_{178}H_{262}N_6O_{24}Si_8^{2+}$: 1545.88043; found 1545.88245.

Butadiyne 15. Butadiyne 14 (55 mg, 17.8 µmol) was dissolved in THF (4 mL). A solution of Bu₄NF in THF (1.0 M, 178 µL, 178 µmol) was added upon which the reaction solution changed its color immediately from yellow to brown. The solution was stirred at room temperature for 1 h. Afterwards it was filtered through silica gel (1.5 cm × 1.5 cm, rinsing with THF). Solvent removal from the eluate gave a yellow solid (34 mg). This yellow solid and PEG-N₃³ (84 mg, 198 µmol) were dissolved in THF (1.5 mL) and EtOH (1 mL). This solution was degassed through three freezepump-thaw cycles. Degassed aqueous solutions of sodium (L)-ascorbate (4.58 mg in 120 μ L H₂O, 23.1 µmol) and CuSO₄•5H₂O (0.1 M, 71 µL, 7.1 µmol) were added successively. A small amount of precipitate formed upon addition of the sodium (L)-ascorbate solution. The suspension was heated to 60 °C whereupon the reaction mixture became an orange-brown suspension. The suspension was stirred for 5 d at 60 °C. Then it was cooled to room temperature. Metal scavenger QuadraPure[™] TU (175 mg) was added and the suspension was stirred at room temperature for 17 h. Metal scavenger QuadraPure[™] BzA (24 mg) was added and the suspension was stirred at room temperature for 3 h. The metal scavenger QuadraPure[™]BzA did not change its color, which indicated that there had been no free Cu(I/II) left in solution. The suspension was filtered through silica gel (1.5 cm × 1.5 cm, CH₂Cl₂/EtOH 4:1). Solvent removal from the eluate gave a viscous yellow oil. This oil contained butadiyne 15, PEG-N₃, TIPS-OH and/or TIPS-F, sodium (L)ascorbate, dehydroascorbic acid, and silicone grease. It was dissolved in CH₂Cl₂ (4 mL) and the resulting solution was washed with H_2O (4 × 4 mL). The washing was performed in a centrifuge tube: The CH_2Cl_2 phase and the aqueous phase were mixed well. Centrifugation of the resulting yellow emulsion at 5000 rpm for 5 min separated the mixture into two phases, a yellow CH₂Cl₂ phase and a colorless aqueous phase. The aqueous phase was removed with the help of a glass pipette. After washing, the solvent of the CH₂Cl₂ phase was removed giving a viscous yelloworange oil (121 mg). ¹H NMR spectroscopy revealed that this mixture consisted of butadiyne **15**, PEG-N₃, silicone grease, and TIPS-OH. ¹H NMR (500 MHz, CD₂Cl₂): Signals assigned to butadiyne **15**: δ = 7.97, 7.94, 7.93, and 7.91 (4s, 2H each, H_{triazole}), 7.52 (s, 4H, H_{pyridine}), 7.29, 7.28, 7.25, and 7.22 (4s, 2H each, H_{benzene}), 5.29, 5.27, 5.23 and 5.20 (4s, 4H each, *benzene*-OCH₂), 4.52 - 4.42 (m, 16H, N_{triazole}CH₂CH), 4.12 (q, ³J = 7.2 Hz, 16H, CH₂CH₃), 3.98 (s, 8H, *pyridine*-CH₂), 3.58 (s, 16H, CH₂CO₂Et), 3.58 – 3.41 (m, 192H, OCH₂CH₂), 3.38 – 3.33 (m, 32H, CHCH₂O), 3.27 (s, 48H, OCH₃), 2.44 (m, 8H, CHCH₂O), 1.23 (t, ³J = 7.2 Hz, 24H, CH₂CH₃).

Ruler precursor 16. The reaction was performed under ambient atmosphere. Material (121 mg, containing ca. 17.8 µmol of butadiyne 15) that had been obtained through the desilylation of butadiyne 14 and the reaction of the desilylation product with PEG-N₃ was dissolved in EtOH (0.7 mL) and H₂O (1.5 mL). An aqueous solution of NaOH (2.0 M, 142.2 μ L, 288.4 μ mol) was added and the solution was stirred at room temperature for 21 h. H₂O (2.8 mL) was added and the solution was washed with CH_2CI_2 (4 × 4 mL) using the following procedure: The aqueous solution was transferred into a centrifuge tube. CH₂Cl₂ was added and the two phases were mixed well. The resulting emulsion which contained a solid phase was centrifuged at 5000 rpm for 5 min. The mixture separated into three phases - a yellow aqueous phase at the top, a flocculent solid in the middle, and a colorless CH₂Cl₂ phase at the bottom. The CH₂Cl₂ phase was removed using a syringe. The water phase and the flocculent solid were washed three more times with CH_2CI_2 using the aforementioned procedure. After washing, MeCN (1 mL) was added to dissolve the flocculent solid. Addition of proton exchange resin (126 mg) lowered the pH of the aqueous solution to ca. 3.0. The suspension was filtered through a syringe filter (PVDF membrane, 0.45 µm). Removal of the solvent from the filtrate using freeze-drying and drying the residue over P₄O₁₀ at reduced pressure provided ruler precursor 16 (69 mg, 78% over 2 steps starting with butadiyne 14) as a yellow-orange solid. ¹H NMR (500 MHz, CD₃OD): δ = 8.24, 8.22, 8.16, and 8.15 (4s, 2H each, H_{triazole}), 7.53 (s, 4H, H_{pyridine}), 7.35, 7.34, and 7.30 (3s, 4H, 2H, and 2H, H_{benzene}), 5.33, 5.32, 5.29, and 5.27 (4s, 4H each, *benzene*-OCH₂), 4.57, 4.56, 4.52, and 4.51(4d, ${}^{3}J$ = 5.8 Hz, 4H each, N_{triazole}CH₂CH), 4.27 (s, 8H, pyridine-CH₂), 3.71 (s, 16H, CH₂CO₂Et), 3.64 - 3.44 (m, 192H, OCH₂CH₂), 3.42 – 3.32 (m, 32H, CHCH₂O), 3.29 (s, 48H, OCH₃), 2.53 – 2.35 (m, 8H, CHCH₂O).

Gd-ruler 2₂. The reaction was performed under ambient atmosphere. Ruler precursor **16** (40 mg, 7.99 µmol) was dissolved in D₂O (500 µL). A solution of GdCl₃ in D₂O (100 mM, 155.8 µL, 15.58 µmol) was added. A solution of NaOD in D₂O (1.0 M, 63.93 µL, 63.93 µmol) was added to rise the pD to 8.0. The solution was diluted with D₂O (658.6 µL) to obtain a 5.0 mM solution of Gd-ruler **2**₂ in D₂O. MS (ESI): m/z = 2655.3 [M - 2Na]²⁻. Accurate MS (ESI): m/z calcd. for [M - 2Na + Cl]³⁻ C₂₃₄H₃₅₆Gd₂N₃₀O₈₈Cl³⁻: 1781.74971; found 1781.74639.

Figure S6. ¹H NMR spectrum of TMS protected alkyne 5.

Figure S7. ¹³C NMR spectrum of TMS protected alkyne 5.

Figure S8. ¹³C DEPT (135) NMR spectrum of TMS protected alkyne 5.

Figure S9. ¹H NMR spectrum of alkyne **7**.

Figure S10. ¹³C NMR spectrum of alkyne 7.

Figure S11. ¹³C DEPT 135 NMR spectrum of alkyne **7**.

Figure S12. ¹H NMR spectrum of butadiyne 8.

Figure S13. ¹³C NMR spectrum of butadiyne **8**.

Figure S14. ¹³C DEPT (135) NMR spectrum of butadiyne 8.

Figure S15. ¹H NMR spectrum of a mixture of butadiyne **9**, PEG-N₃, and TIPS-OH.

Figure S16. ¹H NMR spectrum of ruler precursor **10** • n Na⁺ • m D⁺ • x Na(O₂CCF₃).

Figure S17. ¹H NMR spectrum of butadiyne **14**.

Figure S18. ¹³C NMR spectrum of butadiyne **14**.

Figure S19. ¹³C DEPT (135) NMR spectrum of butadiyne 14.

Figure S20. ¹H NMR spectrum of butadiyne **15**.

Figure S21. ¹H NMR spectrum of ruler precursor 16.

References

- 1 R. F. Heck, *Palladium reagents in organic syntheses*, Academic Press, London, 1985, p18.
- 2 M. Qi, M. Hülsmann and A. Godt, *Synthesis*, 2016, DOI: 1055/s-0035-1561660.
- 3 M. Qi, M. Hülsmann and A. Godt, J. Org. Chem., 2016, 81, 2549–2571.