Exploration of hydrogen bond networks and potential energy surfaces of methanol clusters with a two-stage clustering algorithm

Po-Jen Hsu,^{†‡} Kun-Lin Ho,[†] Sheng-Hsien Lin,^{‡†} and Jer-Lai Kuo[†]

† Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan

‡ Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan

Contents:

- Figure 1s-8s: Binding energy (kcal/mol/MeOH) of (MeOH)_n versus topology labels under OPLS-AA, B3LYP (with/without ZPE), and B3LYP-D3 (with/without ZPE) for n=8 (Fig. 1s) 15 (Fig. 8s).
- Figure 9s-16s: Energy histograms of (MeOH)_n isomers under OPLS-AA, B3LYP(with/without ZPE), and B3LYP-D3(with/without ZPE) for n=8 (Fig. 9s) – 15 (Fig.16s).
- Figure 17s: Structure of the most stable isomers of $(MeOH)_8$ in the leading five topologies of OPLS-AA, B3LYP, and B3LYP-D3 models.
- Figure 18s: Structure of the most stable isomers of (MeOH)₁₁ in the leading five topologies of OPLS-AA, B3LYP, and B3LYP-D3 models.

Figure 1s: Binding energy (kcal/mol/MeOH) of (MeOH)₈ versus topology labels under
(a) OPLS-AA, (b) B3LYP, (c) B3LYP with zero-point energy correction, (d) B3LYP-D3, and (c) B3LYP-D3 with zero-point energy correction.

Figure 2s: Binding energy (kcal/mol/MeOH) of (MeOH)₉ versus topology labels under (a) OPLS-AA, (b) B3LYP, (c) B3LYP with zero-point energy correction, (d) B3LYP-D3, and (c) B3LYP-D3 with zero-point energy correction.

Figure 3s: Binding energy (kcal/mol/MeOH) of (MeOH)₁₀ versus topology labels under (a) OPLS-AA, (b) B3LYP, (c) B3LYP with zero-point energy correction, (d) B3LYP-D3, and (c) B3LYP-D3 with zero-point energy correction.

Figure 4s: Binding energy (kcal/mol/MeOH) of (MeOH)₁₁ versus topology labels under (a) OPLS-AA, (b) B3LYP, (c) B3LYP with zero-point energy correction, (d) B3LYP-D3, and (c) B3LYP-D3 with zero-point energy correction.

Figure 5s: Binding energy (kcal/mol/MeOH) of (MeOH)₁₂ versus topology labels under (a) OPLS-AA, (b) B3LYP, (c) B3LYP with zero-point energy correction, (d) B3LYP-D3, and (c) B3LYP-D3 with zero-point energy correction.

Figure 6s: Binding energy (kcal/mol/MeOH) of (MeOH)₁₃ versus topology labels under (a) OPLS-AA, (b) B3LYP, (c) B3LYP with zero-point energy correction, (d) B3LYP-D3, and (c) B3LYP-D3 with zero-point energy correction.

Figure 7s: Binding energy (kcal/mol/MeOH) of (MeOH)₁₄ versus topology labels under (a) OPLS-AA, (b) B3LYP, (c) B3LYP with zero-point energy correction, (d) B3LYP-D3, and (c) B3LYP-D3 with zero-point energy correction.

Figure 8s: Binding energy (kcal/mol/MeOH) of (MeOH)₁₅ versus topology labels under (a) OPLS-AA, (b) B3LYP, (c) B3LYP with zero-point energy correction, (d) B3LYP-D3, and (c) B3LYP-D3 with zero-point energy correction.

Figure 9s: Energy histograms of (MeOH)₈ isomers under (a) OPLS-AA, (b) B3LYP,
(c) B3LYP with zero-point correction, (d) B3LYP-D3, and (e) B3LYP-D3 with zero-point correction.

Figure 10s: Energy histograms of (MeOH)₉ isomers under (a) OPLS-AA, (b) B3LYP,
(c) B3LYP with zero-point correction, (d) B3LYP-D3, and (e) B3LYP-D3 with zero-point correction.

Figure 11s: Energy histograms of (MeOH)₁₀ isomers under (a) OPLS-AA, (b) B3LYP,
(c) B3LYP with zero-point correction, (d) B3LYP-D3, and (e) B3LYP-D3 with zero-point correction.

Figure 12s: Energy histograms of (MeOH)₁₁ isomers under (a) OPLS-AA, (b) B3LYP,
(c) B3LYP with zero-point correction, (d) B3LYP-D3, and (e) B3LYP-D3 with zero-point correction.

Figure 13s: Energy histograms of (MeOH)₁₂ isomers under (a) OPLS-AA, (b) B3LYP,
(c) B3LYP with zero-point correction, (d) B3LYP-D3, and (e) B3LYP-D3 with zero-point correction.

Figure 14s: Energy histograms of (MeOH)₁₃ isomers under (a) OPLS-AA, (b) B3LYP,
(c) B3LYP with zero-point correction, (d) B3LYP-D3, and (e) B3LYP-D3 with zero-point correction.

Figure 15s: Energy histograms of (MeOH)₁₄ isomers under (a) OPLS-AA, (b) B3LYP,
(c) B3LYP with zero-point correction, (d) B3LYP-D3, and (e) B3LYP-D3 with zero-point correction.

Figure 16s: Energy histograms of (MeOH)₁₅ isomers under (a) OPLS-AA, (b) B3LYP,
(c) B3LYP with zero-point correction, (d) B3LYP-D3, and (e) B3LYP-D3 with zero-point correction.

Figure 17s: Structure of the most stable isomers of (MeOH)₈ in the leading five topologies of (a) OPLS-AA, (b) B3LYP, and (c) B3LYP-D3 models.

Figure 18s: Structure of the most stable isomers of (MeOH)₁₁ in the leading five topologies of (a) OPLS-AA, (b) B3LYP, and (c) B3LYP-D3 models.