Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supporting information

Table S1. Interaction Energy ($E_{int.} = E_{abs.} - E_{relax.} - E_{dist.}$) of C₂H₆, C₃H₈ and C₄H₁₀ on DI-Rh₁₉ and DI-Ni₁₉ Clusters on Rh₁₃L_s, Rh₁₃L_s/UGO and Rh₁₃L_s/TiO₂.

	Rh ₁₃ -L _s				
Alkanes	$E_{\rm dist.}/{\rm eV}$	$E_{\rm relax.}/{\rm eV}$	$E_{\rm ads.}/{\rm eV}$	$E_{\rm int.}/{\rm eV}$	
C_2H_6	0.066	0.035	-0.33	-0.431	
C_3H_8	0.090	0.043	-0.36	-0.493	
C_4H_{10}	0.108	0.027	-0.42	-0.555	
	Rh ₁₃ -L _s /UGO				
Alkanes	$E_{\rm dist.}/{\rm eV}$	$E_{\rm relax.}/{\rm eV}$	$E_{\rm ads.}/{\rm eV}$	$E_{\rm int.}/{\rm eV}$	
C_2H_6	0.069	0.033	-0.38	-0.482	
C_3H_8	0.098	0.038	-0.43	-0.566	
C_4H_{10}	0.101	0.023	-0.49	-0.614	
	Rh ₁₃ -L _s /TiO ₂				
Alkanes	$E_{\rm dist.}/{\rm eV}$	$E_{\rm relax.}/{\rm eV}$	$E_{\rm ads.}/{\rm eV}$	$E_{\rm int.}/{\rm eV}$	
C ₂ H ₆	0.059	0.033	-0.49	-0.582	
C_3H_8	0.085	0.042	-0.52	-0.647	
C_4H_{10}	0.098	0.021	-0.50	-0.619	

Table S2. Calculated Activation Energies (E_a) of 1_{st} alkanes dehydrogenation, and Difference of Integrated Overlap Areas (ΔA) between Initial State and Transition State of the Local Density of States (LDOS) between the top Rh atoms (d state) and alkanes (s and p states) on Rh₁₃L_s, Rh₁₃L_s/UGO and Rh₁₃L_s/TiO₂, respectively.

	$C_2H_6 \rightarrow C_2H_5 + H$					
Substrates	A(IS) /arb. units	A(TS) /arb. units	ΔA arb. units	$E_{\rm a}/{\rm eV}$		
Rh ₁₃ -L _s	0.75	2.43	1.68	0.25		
Rh ₁₃ -L _s /UGO	0.80	2.33	1.53	0.21		
Rh_{13} - L_s/TiO_2	0.86	2.57	1.71	0.29		
	$C_3H_8 \rightarrow C_3H_7 + H$					
Substrates	A(IS) /arb. units	A(TS) /arb. units	ΔA arb. units	$E_{\rm a}/{\rm eV}$		
Rh_{13} - L_s	0.85	2.59	1.74	0.28		
Rh ₁₃ -L _s /UGO	0.93	2.48	1.55	0.22		
Rh ₁₃ -L _s /TiO ₂	0.95	2.74	1.79	0.32		
	$C_4H_{10} \rightarrow C_4H_9 + H$					
Substrates	A(IS) /arb. units	A(TS) /arb. units	ΔA arb. units	$E_{\rm a}/{\rm eV}$		
Rh_{13} - L_s	0.88	2.58	1.70	0.26		
Rh ₁₃ -L _s /UGO	1.04	2.27	1.23	0.16		
Rh ₁₃ -L _s /TiO ₂	1.01	2.83	1.82	0.35		

Table S3. Calculated Activation Energies (E_a) and Gibbs Free Energies (ΔG) of $C_nH_{2n+2(a)} \rightarrow C_nH_{2n+1(a)} + H_{(a)}$ and $C_nH_{2n+1(a)} \rightarrow C_nH_{2n}$ (a) + H_(a) on Rh₁₃L_s, Rh₁₃L_s/UGO and Rh₁₃L_s/TiO₂ in 1073K.

	$C_2H_{6(a)} \rightarrow C_2H_{5(a)} + H_{(a)}$		$C_2H_{5(a)} + H_{(a)} \rightarrow C_2H_{4(a)} + 2H_{(a)}$	
Substrates	<i>E</i> _a (1073K)/eV	ΔG(1073K)/eV	$E_{\rm a}(1073{\rm K})/{\rm eV}$	ΔG(1073K)/eV
Rh_{13} - L_s	0.17	-0.69	0.15	- 0.09
Rh ₁₃ -L _s /UGO	015	- 0.62	0.14	- 0.37
Rh ₁₃ -L _s /TiO ₂	0.23	- 0.36	0.15	- 0.08
	$C_3H_{8(a)} \rightarrow C_3H_{7(a)} + H_{(a)}$		$C_{3}H_{7(a)} + H_{(a)} \rightarrow C_{3}H_{6(a)} + 2H_{(a)}$	
Substrates	<i>E</i> _a (1073K)/eV	ΔG(1073K)	<i>E</i> _a (1073K)/eV	ΔG(1073K)
Rh_{13} - L_s	0.23	- 0.67	0.19	- 0.12
Rh ₁₃ -L _s /UGO	0.17	- 0.57	0.15	- 0.39
Rh ₁₃ -L _s /TiO ₂	0.32	- 0.41	0.19	- 0.09
	$C_4H_{10(a)} \longrightarrow C_4H_{9(a)} + H_{(a)}$		$C_4H_{9(a)} + H_{(a)} \rightarrow C_4H_{8(a)} + 2H_{(a)}$	
Substrates	<i>E</i> _a (1073K)/eV	ΔG(1073K)	<i>E</i> _a (1073K)/eV	ΔG(1073K)
Rh_{13} - L_s	0.25	- 0.43	0.20	- 0.23
Rh ₁₃ -L _s /UGO	0.14	-0.56	0.06	-0.36
Rh ₁₃ -L _s /TiO ₂	0.27	- 0.41	0.19	- 0.12

Figure S1. Profiles of the potential-energy surface for the dehydrogenation of ethane on $Rh_{13}-L_s$, $Rh_{13}-L_s/UGO$ and $Rh_{13}-L_s/TiO_2$.

Figure S2. Profiles of the potential-energy surface for the dehydrogenation of propane on $Rh_{13}-L_s$, $Rh_{13}-L_s/UGO$ and $Rh_{13}-L_s/TiO_2$.

Figure S3. Local density of states (LDOS) and partial charge between rhodium atoms (*d* state) and ethane (*s* and *p* states) on (a) Rh_{13} -L_s cluster; (b) Rh_{13} -L_s/UGO; (c) Rh_{13} -L_s/TiO₂.

Figure S4. Local density of states (LDOS) and partial charge between rhodium atoms (*d* state) and propane (*s* and *p* states) on (a) Rh_{13} -L_s cluster; (b) Rh_{13} -L_s/UGO; (c) Rh_{13} -L_s/TiO₂.

Figure S5. Calculated energetics of Gibbs free energy for alkanes ($C_2H_{6,}C_3H_8$ and C_4H_{10}) dehydrogenation on (a) $Rh_{13}-L_s$; (b) $Rh_{13}-L_s$ /UGO and (c) $Rh_{13}-L_s$ /TiO₂ at 1073K.