Electronic Supplementary Information: Primary vs Secondary H-atom Abstraction in the Cl-Atom Reaction with *n*-Pentane

Shubhrangshu Pandit, Balázs Hornung, Greg T. Dunning, Thomas J. Preston, Kristian Brazener and Andrew J. Orr-Ewing*

School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK. * Author for correspondence: a.orr-ewing@bristol.ac.uk

S.1 Angular distributions measured at different probe beam heights

The velocity map images recorded in our dual molecular beam instrument show mostly forward scattered HCl products from Cl + *n*-pentane, with much weaker back scattering. However, Suits and co-workers previously reported a significant component of back scattered pentyl radical products from their crossed molecular beam experiments, although background signals interfered with the strong forward scattering peak.¹ The dual molecular beam technique uses a range of time delays between the photolysis and probe lasers to try to eliminate any bias in detection of products with faster or slower speeds, but products with low lab-frame speeds are more prone to secondary collisions with the beam of reactant molecules.² In contrast, crossed molecular beam measurements can suffer from bias towards detecting products with lower lab frame velocities.³

In the current study, further investigation of any detection bias was carried out for our dual molecular beam instrument by changing the probe laser beam height with respect to the alkane molecular beam. We reported previously that the detection probability of low-speed HCl products (i.e. those backward scattered in the centre of mass frame) decreases when the probe laser is aligned above the centre of an alkane molecular beam.⁴ We therefore focused the probe laser beam 2-mm below the centre of the molecular beam to promote detection of back-scattered products and compared the images obtained to those with a probe laser beam focused 1-mm above the centre of the alkane beam. The angular scattering distributions from the two sets of measurements are shown in Fig. S1. In both cases, the products are measured to be strongly forward scattered flux) when the probe laser beam is aligned below the alkane molecular beam. The results are also compared with the angular scattering distributions for the case. The results are also compared with the angular scattering distributions dotained by Suits and coworkers¹ for the Cl + *n*-pentane reaction at similar collision energies. For the images presented and analysed in the main paper, the probe laser was focused 0.5 - 1.0 mm above the centre of the *n*-pentane beam.

Fig. S1 Comparison of the angular distributions of HCl from the dual molecular beam experiment used in the current study, and of pentyl radicals from previous crossed molecular beam experiments (ref. 1) at a similar collision energy. The red and blue curves represent the angular distributions of HCl(v=0, J=1) from this work at probe positions of 1 mm above and 2 mm below the centre of the *n*-pentane molecular beam respectively. The corresponding velocity map images are shown on the right and were recorded at an average collision energy of 33.5 kJ mol⁻¹. The solid and dotted black curves are digitised from ref. 1 and show the angular distributions of pentyl radicals from the same reaction at collision energies of 21 kJ mol⁻¹ and 35.3 kJ mol⁻¹ respectively. All the distributions are normalized to sum to unity.

S.2 QCT simulation of geometric requirements for the Cl + *n*-pentane reaction

Calculation of the dependence of reaction probability on the initial orientation of the CI atom with respect to the reactive C-H bond in *n*-pentane provides dynamical stereochemistry insights not available directly from the experimental measurements. In these calculations, the reference frame was defined with the *z*-axis parallel to the reactive C-H bond axis. The polar and azimuthal angles (ψ, ϕ) illustrated in Fig. 10 define the asymptotic angle of approach of the CI atom. The dependence of the reaction probability on this initial orientation was expanded in terms of real spherical harmonics, $Y_l^m(\psi, \phi)$:

$$P(\psi,\phi) = \sum_{l=0}^{N_l} \sum_{m=0}^{l} a_{l,m} Y_l^m(\psi,\phi)$$

$$Y_l^m = \frac{i}{\sqrt{2}} [Y_{lm} - (-1)^m Y_{l-m}], \ m < 0$$

$$Y_l^m = \frac{1}{\sqrt{2}} [Y_{l-m} + (-1)^m Y_{lm}], \ m > 0$$

$$Y_l^0 = Y_{l0}, \ m = 0$$
(S1)

and $Y_{l,m}$ are the regular spherical harmonics. The expansion coefficients $a_{l,m}$ correspond to the expectation values of the basis functions as shown in Eq. (S2). The expansion was performed to numerical distributions deduced from a total of N_{sel} trajectories selected according to specific criteria, such as final state or reactive channel.

$$a_{l,m} = \left\langle Y_l^m(\psi, \phi) \right\rangle = \frac{1}{N_{sel}} \sum_{i}^{N_{sel}} Y_l^m(\psi_i, \phi_i) \tag{S2}$$

S.3 Empirical valence bond force field

S.3.1 Atom types

The atoms of reactant and product molecules were assigned a type using the notation introduced in Table S1. The numbers in parentheses refer to the positions of the carbon atoms in pentane or the pentyl radical: C1 and C5 are primary C-atom sites; C2 and C4 are the two secondary carbon atoms attached to the primary ones; and the single C3 is the secondary carbon atom at the centre of the carbon atom backbone.

Table S1: Atom	type assignments	in pentane, penty	l radicals, and HC
----------------	------------------	-------------------	--------------------

Туре	Atom	Description
1	С	Csp ³ generic
11	С	Csp ³ CH ₃ (C1,C5)
12	С	Csp ³ CH ₂ (C2,C4)
13	С	Csp ³ CH ₂ middle (C3)
2	С	Csp ² generic
21	С	Csp ² primary (C1)
22	С	Csp ² second (C2,C4)
23	С	Csp ² middle (C3)
5	н	H generic
30	Cl	Cl generic

S.3.2 Bond stretching energy terms

The energies associated with bond stretching between atoms of types *i* and *j* are described by a Morse potential:

$$E(r_{ij}) = D_{ij,0} [1 - \exp(-\beta_{ij}(r_{ij} - r_{ij,0}))]^2,$$
(S3)

where r_{ij} is the distance between the two atoms, $r_{ij,0}$ is their equilibrium distance, β_{ij} is the force constant, and $D_{ij,0}$ is the dissociation energy. The fitted parameters are listed in Table S2.

i	j	<i>b_{ij}</i> / Å⁻¹	<i>r_{ij,0} /</i> Å	D _{ij,0} / (kJ mol ⁻¹)
1	1	1.40	1.53	511.69
1	2	1.79	1.49	668.82
1	5	1.70	1.10	549.02
2	5	1.65	1.09	511.09
5	11	1.86	1.10	493.94
5	12	1.86	1.10	493.94
5	13	1.86	1.10	493.94
5	21	1.65	1.09	511.09
5	22	1.65	1.09	511.09
5	23	1.65	1.10	511.09
11	12	1.40	1.53	568.88
11	22	1.79	1.50	668.82
12	13	1.40	1.53	568.88
12	21	1.79	1.50	668.82
12	23	1.79	1.50	668.82
13	22	1.79	1.50	668.82
5	30	1.80	1.28	505.98

Table S2: Values of parameters in the Morse functions used to describe bond stretching potential energies

 between atoms of types i and j defined in Table S1.

S.3.3 Angle bending terms

Angle bending energy is described by a cubic polynomial function

$$E(\theta_{ijk}) = k_{2,ijk} (\theta_{ijk} - \theta_{ijk,0})^2 [1 + k_{3,ijk} (\theta_{ijk} - \theta_{ijk,0})],$$
(S4)

where θ_{ijk} , is the angle between atom types *i*, *j* and *k*, $\theta_{ijk,0}$ is the equilibrium angle, and k_2 and k_3 are the quadratic and cubic force constants. The parameters are listed in Table S3 for atom types defined in Table S1.

	i	k	Aug 1º	$k_{1} = \frac{1}{2} \left(\frac{1}{2} \log^{-1} \frac{1}{2} \right)$	k / (kl mol ⁻¹ °-2)
]	<u>к</u>	Uikj,0 /	K _{2,ijk} / (KJ 11101)	K _{3,ijk} / (KJ 1101)
1	1	1	112.60	0.14	-0.0009
1	1	2	113.40	0.12	-0.0010
1	1	5	110.00	0.06	-0.0008
1	2	1	120.20	0.09	-0.0009
1	2	5	119.20	0.04	0.0000
2	1	5	110.00	0.06	-0.0004
5	1	5	107.07	0.05	-0.0003
5	2	5	117.60	0.03	0.0003
5	11	5	107.82	0.05	-0.0003
5	11	12	111.20	0.06	-0.0008
5	12	5	106.50	0.05	-0.0003
5	12	11	109.60	0.06	-0.0008
5	12	13	109.10	0.06	-0.0008
5	12	23	109.42	0.06	-0.0004
5	12	21	109.92	0.06	-0.0004
5	13	5	106.30	0.05	-0.0003
5	13	12	109.26	0.06	-0.0008
5	11	22	111.40	0.06	-0.0004
5	13	22	109.60	0.06	-0.0004
5	21	5	117.76	0.03	0.0003
5	21	12	120.70	0.04	0.0000
5	22	11	118.74	0.04	0.0000
5	22	13	118.08	0.04	0.0000
5	23	12	118.25	0.04	0.0000
11	12	13	112.60	0.14	-0.0009
11	12	23	113.20	0.12	-0.0010
11	22	13	120.25	0.09	-0.0009
12	23	12	120.72	0.09	-0.0009

Table S3: Values of parameters in the cubic polynomial function used to describe angle bending energy terms

12	13	12	113.20	0.14	0.0000
12	13	22	113.74	0.12	0.0000
13	12	21	113.21	0.12	0.0000

S.3.4 Torsional terms

The torsional energy term for four linearly connected atoms is defined in Eqn. (S5).

$$E(\varphi_{ijkl}) = \sum_{a=1}^{3} \frac{1}{2} V_{a,ijkl} [1 - \cos(a\varphi_{ijkl} - \varphi_{ijkl,0})]$$
(S5)

Here, φ_{ijkl} is the dihedral angle spanned by the atoms of types *i-j-k-l*, $\varphi_{ijkl,0}$ is the equilibrium dihedral angle, and $V_{a,ijkl}$ is the barrier height. No distinction was made between the various subtypes of C(sp³) and C(sp²) atoms. The fitted parameters are listed in Table S4.

Table S4: Values of parameters in the function used to describe torsional energy terms for atom types defined in Table S1.

i	j	k	Ι	<i>Ф</i> ikjl,0 / °	V _{1,ijkl} /(kJ mol ⁻¹ °-2)	V _{2,ijkl} / (kJ mol ⁻¹ °- ²)	V _{3,ijkl} /(kJ mol ⁻¹ °-3)
1	1	1	1	0.00	0.77	0.71	2.18
1	1	1	2	0.00	0.84	-0.84	5.44
1	1	1	5	0.00	0.00	0.00	1.32
1	1	2	1	0.00	0.42	0.84	3.35
1	1	2	5	0.00	0.00	0.00	0.04
1	2	1	5	0.00	0.00	0.00	2.26
2	1	1	5	0.00	0.00	0.00	2.09
5	1	1	5	0.00	0.00	0.00	1.58
5	1	2	5	0.00	0.00	0.00	0.04

S.3.5 Out-of-plane bending

The out-of-plane angle for the atom types *i*, *k*, *l*, connected to the centre, *j*, is defined as the angle between the *i*–*j* vector and the *i*–*k*–*l* plane. The functional form of the improper torsion energy term is the same as for the angle bending and is given by Eqn. (S4) apart from an extra quartic term. No distinction was made between the various subtypes of $C(sp^3)$ and $C(sp^2)$ atoms. The parameters are specified in Table S5.

i	j	k	Ι	θ _{ikjl,0} ∕°	k _{2,ijkl} / (kJ mol ⁻¹ ° ⁻²)	k _{3,ijkl} /(kJ mol ⁻¹ °-3)	k₄,ijkl∕(kJ mol ⁻¹ °⁻⁴)
1	2	1	5	5.90	0.05	0.00092	0.00117
1	2	5	5	3.31	0.05	0.00092	0.00117
5	2	1	1	5.00	0.05	0.00000	0.00000
5	2	1	5	2.86	0.05	0.00000	0.00000

Table S5: Values of parameters in the potential energy functions for out-of-plane bending

S.3.6 van der Waals interactions

The van der Waals interaction terms incorporated in the EVB force fields were modelled by the Buckingham–Corner four parameter function defined in Eqs. (S6)–(S7)

$$V(x_{ij}) = \varepsilon_{ij} \left(\frac{8 - 2c_{6,ij}}{\beta_{ij} - 8} \exp[\beta_{ij}(1 - x_{ij})] - c_{6,ij}x_{ij}^{-6} - c_{8,ij}x_{ij}^{-8} \right),$$

$$x_{ij} = \frac{r_{ij}}{r_{ij,0}},$$

$$c_{8,ij} = \frac{6c_{6,ij} + \beta_{ij} - \beta_{ij}c_{6,ij}}{\beta_{ij} - 8}.$$
(S6)

In this function, r_{ij} is the distance between atoms *i*, *j*; $r_{ij,0}$ is the distance between these two atoms at the maximum well depth of ε_{ij} ; β_{ij} is the repulsive force constant; and $c_{6, ij}$ and $c_{8, ij}$ are the coefficients of the attractive terms. To avoid the Buckingham catastrophe at short interatomic distances the attractive terms are multiplied by the exponential damping term of Eq. (S7) where $x_{ij} < 1$.

$$f(x_{ij}) = \exp\left[-4(x_{ij} - 1)^3\right]$$
(S7)

No distinction was made between the various subtypes of C(sp³) and C(sp²) atoms. The optimised van der Waals parameters are listed in Table S6.

i	J	<i>ɛ</i> _{ij} ∕ (kJ mol⁻¹)	<i>r</i> _{ij,0} / Å	$eta_{ m ij}$ / Å-1	C _{6,ij}
1	5	0.65	3.20	9.61	3.54
2	5	0.65	3.20	9.61	3.54
1	30	2.09	3.78	11.09	3.22
2	30	2.09	3.78	11.09	3.22
5	5	0.10	2.51	14.09	3.59

Table S6: Values of parameters in the Buckingham-Corner function for van der Waals interactions.

5	30	0.19	4.00	12.00	3.55
---	----	------	------	-------	------

S.3.7 Reactive coupling terms

The coupling terms, V_{1N} , $1 \neq N$, between the reactant state and *N*-th product state were treated using two-dimensional Gaussian functions that depended on the reactive C—H and H—Cl distances. The exact form of the coupling term is given in Eqs. (S8) and (S9).

$$V_{1N} = A \exp\left[-b_{11}(r_{ij} - r_{ij,0})^2 + b_{22}(r_{jk} - r_{jk,0})^2 + b_{12}(r_{ij} - r_{ij,1})\right]$$
(S8)

The coefficients in the exponent represent an equation of an ellipse to keep the matrix

$$\begin{bmatrix} b_{11} & \frac{b_{12}}{2} \\ \frac{b_{12}}{2} & b_{22} \end{bmatrix} = \begin{bmatrix} \frac{\cos^2\theta}{2\sigma_{ij}^2} + \frac{\sin^2\theta}{2\sigma_{jk}^2} & \frac{\sin 2\theta}{-4\sigma_{ij}^2} + \frac{\sin 2\theta}{4\sigma_{jk}^2} \\ \frac{\sin 2\theta}{-4\sigma_{ij}^2} + \frac{\sin 2\theta}{4\sigma_{jk}^2} & \frac{\sin^2\theta}{2\sigma_{ijC-H}^2} + \frac{\cos^2\theta}{2\sigma_{jk}^2} \end{bmatrix}$$
(S9)

positive semi-definite. Therefore, the coupling term cannot diverge for any i(C)-j(H) and j(H)-k(CI) distances. In Eqn. (S8) and (S9), A is the amplitude of the coupling, $r_{ij,0}$ and $r_{jk,0}$ locate the centre of the Gaussian function, θ_{ijk} is the angle between the main axis of the Gaussian function and the C–H bond, and σ_{ij}^2 are the widths of the Gaussian function. Table S7 lists the fitted values of the parameters.

i(C)	j(H)	k(Cl)	A / (kJ mol ⁻¹)	<i>r</i> _{ij,0} / Å	$\sigma_{\! m ij}$ / Å	<i>r</i> _{jk,0} / Å	$\sigma_{\! m jk}$ / Å	$ heta_{ijk}$ / degrees
11	5	30	173.47	1.21	1.23	1.42	0.71	177.38
12	5	30	188.15	1.27	0.61	1.41	1.16	78.05
13	5	30	192.21	1.17	1.27	1.42	0.61	170.86

Table S7: Values of parameters used in the reactive coupling energy terms.

S.4 Geometries and frequencies of the stationary points from *ab initio* calculations

pentane						
MP2	aug-cc-pVDZ					
Energy / (kJ mol ⁻¹)	Structure:	x / Å	y / Å	z / Å		Frequency / (cm ⁻¹)
0	C	2.4888	-0.3095	-0.0221	1	105
	Н	2.5278	-1.0309	0.8107	2	111
	н	3.3874	0.3246	0.0377	3	175
	н	2.5393	-0.8799	-0.9642	4	246
	C	1.2047	0.5259	0.0408	5	254
	н	1.1866	1.1099	0.9785	6	393
	н	1.1977	1.2593	-0.7854	7	401
	С	-0.0602	-0.3354	-0.0401	8	728
	Н	-0.0591	-1.0667	0.7894	9	759
	Н	-0.0482	-0.9218	-0.9766	10	858
	С	-1.3528	0.4920	0.0218	11	877
	Н	-1.3649	1.2234	-0.8063	12	939
	Н	-1.3362	1.0974	0.9530	13	982
	C	-2.5941	-0.3472	-0.0211	14	1045
	Н	-2.6003	-1.3428	0.4272	15	1075
	Н	-3.5492	0.0728	-0.3391	16	1101
					17	1166
					18	1198
					19	1256
					20	1269
					21	1316
					22	1320
					23	1350
					24	1391
					25	1392
					26	1396
					27	1469
					28	1475
					29	1484
					30	1490
					31	1491
					32	1493
					33	1498
					34	3030
					35	3047

Reactants and products

		36	3052
		37	3054
		38	3055
		39	3073
		40	3096
		41	3108
		42	3143
		43	3143
		44	3149
		45	3149
		ZPE	422.28 kJ/mol

pent-1-yl						
MP2	aug-cc-pVDZ					
Energy /						Frequency /
(kJ mol ⁻¹)	Structure:	x/Å	y / Å	z/Å		(cm ⁻¹)
14.50	С	2.4888	-0.3095	-0.0221	1	98
	Н	2.5278	-1.0309	0.8107	2	113
	Н	3.3874	0.3246	0.0377	3	132
	Н	2.5393	-0.8799	-0.9642	4	179
	С	1.2047	0.5259	0.0408	5	251
	Н	1.1866	1.1099	0.9785	6	390
	Н	1.1977	1.2593	-0.7854	7	405
	С	-0.0602	-0.3354	-0.0401	8	471
	Н	-0.0591	-1.0667	0.7894	9	723
	Н	-0.0482	-0.9218	-0.9766	10	767
	С	-1.3528	0.4920	0.0218	11	865
	Н	-1.3649	1.2234	-0.8063	12	910
	Н	-1.3362	1.0974	0.9530	13	949
	С	-2.5941	-0.3472	-0.0211	14	1036
	Н	-2.6003	-1.3428	0.4272	15	1081
	Н	-3.5492	0.0728	-0.3391	16	1100
					17	1112
					18	1170
					19	1224
					20	1265
					21	1297
					22	1319
					23	1349
					24	1390
					25	1395
					26	1455
					27	1473

		28	1481
		29	1483
		30	1490
		31	1496
		32	2990
		33	3040
		34	3051
		35	3055
		36	3074
		37	3088
		38	3109
		39	3144
		40	3150
		41	3191
		42	3307
		ZPE	383 kJ/mol

pent-2-yl						
MP2	aug-cc-pVDZ					
Energy / (kJ mol ⁻¹)	Structure:	x / Å	y / Å	z / Å		Frequency / (cm ⁻¹)
5.30	С	0.0000	0.0000	0	1	61
	Н	1.1025	0.0000	0	2	102
	Н	-0.3375	1.0484	0	3	141
	Н	-0.3366	-0.4639	0.94192	4	182
	С	-0.5454	-0.7655	-1.21085	5	245
	Н	-1.6493	-0.7349	-1.20501	6	378
	Н	-0.2207	-0.2735	-2.14383	7	404
	С	-0.0876	-2.2302	-1.23381	8	416
	Н	1.0191	-2.2726	-1.23691	9	732
	Н	-0.3958	-2.7153	-0.28084	10	848
	С	-0.6196	-3.0107	-2.39822	11	880
	Н	-1.5926	-2.7236	-2.80974	12	944
	С	-0.0859	-4.3794	-2.69705	13	969
	Н	1.0177	-4.3834	-2.69488	14	1045
	Н	-0.4308	-4.7501	-3.67416	15	1079
	Н	-0.4068	-5.1166	-1.93272	16	1095
					17	1152
					18	1180
					19	1240
					20	1266
					21	1311
					22	1353

		23	1388
		24	1395
		25	1425
		26	1452
		27	1467
		28	1476
		29	1480
		30	1490
		31	1495
		32	2970
		33	3006
		34	3045
		35	3055
		36	3058
		37	3092
		38	3109
		39	3144
		40	3150
		41	3152
		42	3208
		ZPE	383.27 kJ/mol

pent-3-yl						
MP2	aug-cc-pVDZ					
Energy / (kJ mol ⁻¹)	Structure:	x / Å	y / Å	z/ Å		Frequency / (cm ⁻¹)
6.20	С	2.5169	-0.4047	-0.0816	1	52
	Н	2.5778	-1.0567	0.8047	2	74
	Н	3.4569	0.165	-0.1484	3	175
	Н	2.4411	-1.0485	-0.9721	4	242
	С	1.3034	0.5295	0.0165	5	246
	Н	1.4296	1.2001	0.8934	6	393
	Н	1.2711	1.2006	-0.8621	7	401
	С	0.0000	-0.204	0.1259	8	411
	Н	0.0000	-1.1953	0.5945	9	747
	С	-1.3034	0.5295	0.0165	10	782
	Н	-1.2711	1.2006	-0.8621	11	880
	Н	-1.4296	1.2001	0.8934	12	957
	С	-2.5169	-0.4047	-0.0816	13	1015
	Н	-2.5778	-1.0567	0.8047	14	1050
	Н	-3.4569	0.165	-0.1484	15	1072
	н	-2.4411	-1.0485	-0.9721	16	1084
					17	1153

		18	1176
		19	1256
		20	1270
		21	1273
		22	1349
		23	1392
		24	1396
		25	1432
		26	1454
		27	1465
		28	1489
		29	1489
		30	1494
		31	1494
		32	2986
		33	2989
		34	3060
		35	3061
 		36	3061
 		37	3062
		38	3150
		39	3150
		40	3156
		41	3156
		42	3188
		ZPE	383.88 kJ/mol

Entrance channel complex

pentane + Cl 1 pos							
Level		SCS-MP2-F12/aug-cc-pVDZ//MP2/6-31G(d,p)					
Energy / (kJ mol ⁻¹)	Structure:	x/Å	y / Å	z / Å		Frequency / (cm ⁻¹)	
-6.00	С	4.0240	-0.9188	0.0000	1	13	
	Н	3.8643	-1.5414	0.8805	2	44	
	Н	5.0656	-0.5997	0.0000	3	67	
	Н	3.8643	-1.5414	-0.8805	4	117	
	С	3.0745	0.2737	0.0000	5	126	
	Н	3.2701	0.8991	0.8749	6	185	
	Н	3.2701	0.8991	-0.8749	7	259	
	С	1.6062	-0.1393	0.0000	8	278	
	Н	1.4076	-0.7652	0.8757	9	407	
	Н	1.4076	-0.7652	-0.8757	10	411	
	С	0.6445	1.0442	0.0000	11	749	

 Н	0.8437	1.6682	-0.8751	12	791
 Н	0.8437	1.6682	0.8751	13	904
 С	-0.8193	0.6163	0.0000	14	907
 Н	-1.0444	0.0154	0.8817	15	964
Н	-1.4849	1.4791	0.0000	16	1037
Н	-1.0444	0.0154	-0.8817	17	1079
Cl	-4.2025	-0.3934	0.0000	18	1093
				19	1123
				20	1203
				21	1272
				22	1322
				23	1334
				24	1369
				25	1372
				26	1409
				27	1454
				28	1459
				29	1466
				30	1542
				31	1545
				32	1556
				33	1560
				34	1566
				35	1571
				36	2128
				37	3100
				38	3114
				39	3119
				40	3120
				41	3124
				42	3147
				43	3167
				44	3179
				45	3218
				46	3220
				47	3220
				48	3267
				ZPE	440.70 kJ/mol

pentane + Cl 2 pos							
Level	SCS-MP2-F12/aug-cc-pVDZ//MP2/6-31G(d,p)						
Energy / (kJ mol ⁻¹)	Structure:	x/Å	y / Å	z / Å		Frequency / (cm ⁻¹)	
	С	2.3955	-1.9443	0.0001	1	24	

L	2 0020	1 7261	0 0000		FF
н	2 1578	-1.7301	-0.8802	2	80
н	3 0030	-1 7366	0.0003	3	110
C	1 1328	-1 0901	-0.0012	_	113
н	0.5252	-1 33/17	-0.8757	6	124
н	0.5232	-1 3351	0.8737	7	257
	1 /201	0 4062	0.0002	, ,	257
н	2 0375	0.4002	-0.8754	9	405
н	2.0373	0.0540	0.8754	10	405
	0.17/3	1 2724	-0.0003	10	752
 н	-0.4301	1.2754	0.0002	12	792
н	-0.4301	1.0201	-0.8784	12	892
C	0.4204	2 7669	0.0704	13	904
н	1 0612	3 0420	-0.8806	14	904
н	-0.4321	3 3617	-0.0001	15	1022
 Ц	1 0608	3.3017	-0.0001	10	1022
	2 9112	0.7124	0.001	17	1078
	-2.0115	-0.7134	0.0001	10	1094
				19	1123
				20	1202
				21	1250
				22	1313
				23	1323
				24	1308
				25	1373
				20	1411
				27	1455
				28	1462
				29	1400
				30	1538
				31	1541
				32	1553
				33	1560
				34	1500
				35	1504
				30	1508
				37	3099
				38	3108
				39	3116
				40	3123
				41	3124
				42	3145
				43	3166
				44	31/9
				45	3217

		46	3218
		47	3220
		48	3220
		ZPE	436.57 kJ/mol

pentane + Cl 3	pos					
Level		SCS-M	P2-F12/aug-cc-p	VDZ//MP2/6-31	G(d,p)	
Energy / (kJ mol ⁻¹)	Structure:	x / Å	y / Å	z / Å		Frequency / (cm ⁻¹)
-2.26	С	0.7807	-2.5382	0.0000	1	11
	Н	0.1389	-2.5736	0.8806	2	16
	Н	1.3992	-3.4351	-0.0001	3	26
	Н	0.1387	-2.5736	-0.8805	4	109
	С	1.6311	-1.2731	0.0000	5	116
	Н	2.2861	-1.2696	0.8751	6	182
	Н	2.2859	-1.2696	-0.8753	7	255
	С	0.7938	0.0019	0.0000	8	264
	Н	0.1406	-0.0004	0.8795	9	405
	Н	0.1404	-0.0004	-0.8793	10	408
	С	1.6224	1.2825	0.0000	11	746
	Н	2.2772	1.2835	-0.8752	12	785
	Н	2.2773	1.2836	0.8752	13	890
	С	0.7632	2.5419	0.0000	14	905
	Н	0.1211	2.5727	0.8805	15	963
	Н	1.3756	3.4429	0.0001	16	1019
	Н	0.1212	2.5728	-0.8806	17	1078
	Cl	-2.7206	-0.0072	0.0000	18	1093
					19	1123
					20	1202
					21	1253
					22	1310
					23	1324
					24	1366
					25	1370
					26	1409
					27	1456
					28	1463
					29	1467
					30	1540
					31	1546
					32	1555
					33	1559
					34	1560
					35	1567

		ZPE	435.54 kJ/mol
		48	3219
		47	3219
		46	3217
		45	3216
		44	3177
		43	3163
		42	3145
		41	3123
		40	3123
		39	3118
		38	3113
		37	3101
		36	1570

Exit channel complex

pent-1-yl + HCl						
Level		SCS-M	P2-F12/aug-cc-p	VDZ//MP2/6-31	G(d,p)	
Energy / (kJ mol ⁻¹)	Structure:	x / Å	y / Å	z / Å		Frequency / (cm ⁻¹)
-2.26	С	3.044354	-1.265266	0.243785	1	32
	Н	3.336666	-0.991729	1.257723	2	39
	Н	3.945835	-1.540135	-0.30237	3	89
	н	2.407599	-2.147584	0.306835	4	124
	С	2.31003	-0.116105	-0.43719	5	141
	Н	2.973122	0.749539	-0.51645	6	187
	н	2.050638	-0.401105	-1.46005	7	241
	С	1.041051	0.291365	0.303699	8	262
	Н	1.296238	0.584907	1.326419	9	395
	Н	0.376677	-0.572686	0.384658	10	405
	С	0.295613	1.44019	-0.37517	11	414
	Н	0.030617	1.155322	-1.39713	12	430
	Н	0.980674	2.293746	-0.47724	13	640
	С	-0.92568	1.875745	0.361885	14	749
	н	-0.91997	1.883468	1.443425	15	803
	Н	-1.66246	2.499106	-0.12501	16	893
	Н	-2.12175	0.083687	0.141904	17	947
	Cl	-2.78153	-0.997183	-0.06852	18	977
					19	1067
					20	1106
					21	1127
					22	1143
					23	1210

		24	1277
		25	1320
		26	1351
		27	1372
		28	1408
		29	1454
		30	1466
		31	1522
		32	1533
		33	1544
		34	1555
		35	1560
		36	1568
		37	2890
		38	3061
		39	3110
		40	3118
		41	3125
		42	3144
		43	3160
		44	3181
		45	3219
		46	3223
		47	3236
		48	3350
			419.71
		ZPE	kJ/mol

pent-2-yl + HCl									
Level		SCS-MP2-F12/aug-cc-pVDZ//MP2/6-31G(d,p)							
Energy / (kJ mol ⁻¹)	Structure:	x / Å	y / Å	z / Å		Frequency / (cm ⁻¹)			
-15.95	С	-2.95164	-0.969407	-0.26433	1	37			
	Н	-2.714444	-1.273553	-1.28376	2	55			
	Н	-3.393452	-1.824242	0.245617	3	79			
	н	-3.704804	-0.182928	-0.31661	4	106			
	С	-1.702877	-0.478902	0.458229	5	126			
	Н	-1.955034	-0.201642	1.484785	6	169			
	Н	-0.97369	-1.288732	0.523991	7	210			
	С	-1.058488	0.71976	-0.23609	8	258			
	Н	-0.797717	0.453504	-1.26597	9	399			
	н	-1.804552	1.524034	-0.32391	10	411			
	С	0.151478	1.250267	0.461722	11	476			
	н	0.152966	1.212312	1.546416	12	486			

н	1.408254	-0.348317	0.208722	13	594
С	1.005771	2.283395	-0.19536	14	758
н	1.215767	2.017786	-1.23183	15	884
н	1.952948	2.417028	0.324653	16	906
н	0.500399	3.25588	-0.20995	17	967
CI	2.202817	-1.32893	-0.0616	18	1018
				19	1079
				20	1107
				21	1148
				22	1176
				23	1215
				24	1295
				25	1319
				26	1365
				27	1413
				28	1457
				29	1467
				30	1475
				31	1524
				32	1539
				33	1546
				34	1551
				35	1560
				36	1566
				37	2776
				38	3048
				39	3087
				40	3123
				41	3125
				42	3129
				43	3177
				44	3181
				45	3219
				46	3224
				47	3225
				48	3245
					420.48
				ZPE	kJ/mol

pent-3-yl + HCl							
Level	SCS-MP2-F12/aug-cc-pVDZ//MP2/6-31G(d,p)						
Energy / (kJ mol ⁻¹)	Structure:	x/Å	y / Å	z / Å		Frequency / (cm ⁻¹)	
-15.94	С	2.51618	0.74119	0.344209	1	54	

н	2.564717	1.205961	1.328639	2	59
Н	3.437261	0.978637	-0.18552	3	77
н	2.474816	-0.338068	0.481332	4	78
С	1.297272	1.238965	-0.42779	5	144
Н	1.394292	2.319644	-0.603	6	184
Н	1.271745	0.78528	-1.42288	7	258
С	-0.000409	0.978893	0.267403	8	265
Н	-0.000425	1.029644	1.353252	9	405
Н	0.000444	-1.048435	0.139302	10	414
С	-1.298287	1.237997	-0.42778	11	487
Н	-1.27241	0.784369	-1.42288	12	506
н	-1.396138	2.318608	-0.60294	13	590
С	-2.516806	0.739245	0.3442	14	773
Н	-2.565706	1.203939	1.328649	15	824
н	-3.438072	0.975994	-0.18552	16	907
Н	-2.474596	-0.339986	0.481279	17	981
CI	0.000963	-2.323137	-0.07595	18	1051
				19	1081
				20	1094
				21	1147
				22	1173
				23	1213
				24	1306
				25	1319
				26	1327
				27	1407
				28	1466
				29	1470
				30	1476
				31	1523
				32	1533
				33	1560
				34	1560
				35	1565
				36	1565
				37	2744
				38	3061
				39	3064
				40	3132
				41	3133
				42	3138
				43	3141
				44	3224
				45	3226

		46	3228
		47	3234
		48	3234
		ZPE	421.10 kJ/mol

Transition state

pent-1-yl + HCl TS							
Level		SCS-M	P2-F12/aug-cc-p	VDZ//MP2/6-31	G(d,p)		
Energy / (kJ mol ⁻¹)	Structure:	x/Å	y / Å	z / Å		Frequency / (cm ⁻¹)	
16.02	С	3.198587	-0.992914	0.225262	imag	-1066	
	Н	3.428085	-0.717012	1.259456	1	54	
	Н	4.144013	-1.105035	-0.313088	2	63	
	Н	2.698341	-1.966233	0.239695	3	125	
	С	2.305149	0.060732	-0.429223	4	159	
	Н	2.827164	1.025663	-0.455284	5	184	
	н	2.10625	-0.218937	-1.471138	6	262	
	С	0.973593	0.229629	0.301663	7	399	
	Н	1.16459	0.514546	1.345076	8	410	
	Н	0.447315	-0.731956	0.324927	9	451	
	С	0.069758	1.278561	-0.347275	10	527	
	Н	-0.117134	1.016399	-1.395404	11	739	
	Н	0.590542	2.249739	-0.358527	12	780	
	С	-1.240529	1.469526	0.365663	13	880	
	Н	-1.198927	1.521129	1.454436	14	897	
	Н	-1.953159	2.161611	-0.082848	15	960	
	Н	-1.903688	0.298222	0.19002	16	971	
	CI	-2.592515	-0.960079	-0.084345	17	1023	
					18	1052	
					19	1089	
					20	1120	
					21	1146	
					22	1213	
					23	1248	
					24	1289	
					25	1323	
					26	1356	
					27	1373	
					28	1411	
					29	1456	
					30	1467	
					31	1513	
					32	1524	

		33	1545
		34	1555
		35	1560
		36	1568
		37	3078
		38	3111
		39	3119
		40	3126
		41	3158
		42	3164
		43	3185
		44	3193
		45	3220
		46	3224
		47	3296
		ZPE	416.10 kJ/mol

pent-2-yl + HCl TS								
Level	SCS-MP2-F12/aug-cc-pVDZ//MP2/6-31G(d,p)							
Energy / (kJ mol ⁻¹)	Structure:	x/Å	y/Å	z / Å		Frequency / (cm ⁻¹)		
-0.18	С	3.060466	-0.550369	-0.254226	imag	-930		
	Н	2.913675	-0.841458	-1.299028	1	66		
	Н	3.649322	-1.331509	0.23431	2	82		
	Н	3.645625	0.374878	-0.239918	3	131		
	С	1.71502	-0.353906	0.443702	4	154		
	Н	1.150945	-1.292618	0.435576	5	185		
	Н	1.876585	-0.085848	1.495008	6	224		
	С	0.873176	0.734785	-0.222726	7	258		
	Н	0.711668	0.489811	-1.280545	8	394		
	Н	1.42762	1.687779	-0.205882	9	413		
	С	-0.46141	0.973463	0.437881	10	515		
	Н	-0.4237	0.985009	1.531688	11	742		
	Н	-1.10869	-0.153294	0.244272	12	799		
	С	-1.3663	2.014436	-0.170172	13	882		
	Н	-1.48254	1.845515	-1.244094	14	907		
	Н	-2.35463	2.007782	0.295365	15	962		
	Н	-0.92669	3.010237	-0.026566	16	977		
	Cl	-1.88264	-1.388631	-0.079232	17	1044		
					18	1068		
					19	1097		
					20	1123		

		21	1172
		22	1216
		23	1252
		24	1308
		25	1318
		26	1369
		27	1411
		28	1454
		29	1463
		30	1468
		31	1518
		32	1539
		33	1546
		34	1551
		35	1560
		36	1566
		37	3072
		38	3112
		39	3125
		40	3127
		41	3149
		42	3187
		43	3192
		44	3205
		45	3220
		46	3226
		47	3242
		ZPE	416.27 kJ/mol

pent-3-yl + HCl TS									
Level		SCS-MP2-F12/aug-cc-pVDZ//MP2/6-31G(d,p)							
Energy / (kJ mol ⁻¹)	Structure:	x/Å	y / Å	z / Å		Frequency / (cm ⁻¹)			
-1.69	С	-2.538588	-0.642362	0.333437	imag	-881			
	Н	-2.555844	-1.033916	1.35522	1	83			
	Н	-3.448509	-0.974337	-0.173351	2	95			
	Н	-2.553353	0.44912	0.383543	3	113			
	С	-1.294041	-1.129237	-0.409104	4	139			
	Н	-1.303255	-2.228498	-0.473172	5	191			
	Н	-1.292599	-0.757389	-1.440418	6	261			
	С	-0.000106	-0.731443	0.256694	7	263			
	Н	-0.000167	-0.845111	1.346855	8	409			
	Н	0.000082	0.592212	0.161521	9	410			
	С	1.293758	-1.129653	-0.408982	10	518			

н	1.292365	-0.758156	-1.440422	11	743
н	1.302783	-2.228939	-0.472675	12	770
С	2.538404	-0.642766	0.333387	13	894
н	2.555531	-1.033891	1.355337	14	912
н	3.448254	-0.97519	-0.173233	15	944
н	2.553443	0.448732	0.383036	16	984
CI	0.000277	2.058713	-0.08499	17	1062
				18	1068
				19	1086
				20	1111
				21	1166
				22	1216
				23	1245
				24	1308
				25	1317
				26	1348
				27	1408
				28	1462
				29	1466
				30	1470
				31	1517
				32	1528
				33	1559
				34	1559
				35	1567
				36	1567
				37	3084
				38	3089
				39	3134
				40	3134
				41	3161
				42	3161
				43	3181
				44	3227
				45	3227
				46	3241
				47	3241
				ZPE	416.54 kJ/mol

S.5 Geometries and frequencies of the stationary points from the EVB fit

Reactants and Products

pentane		-				
Level	EVB					
Energy / (kJ mol ⁻¹)	Structure	x/Å	y / Å	z/ Å		Frequency / (cm ⁻¹)
-2.04	С	2.5385	-0.3351	0.0000	1	100
	н	2.5760	-0.9827	0.8894	2	118
	Н	3.4430	0.2924	0.0000	3	237
	н	2.5760	-0.9827	-0.8894	4	247
	С	1.2731	0.5212	0.0000	5	248
	Н	1.2683	1.1776	0.8837	6	378
	Н	1.2683	1.1776	-0.8837	7	477
	С	0.0000	-0.3224	0.0000	8	685
	Н	0.0000	-0.9808	0.8824	9	753
	Н	0.0000	-0.9808	-0.8824	10	764
	С	-1.2731	0.5212	0.0000	11	874
	Н	-1.2683	1.1776	-0.8837	12	899
	Н	-1.2683	1.1776	0.8837	13	905
	С	-2.5385	-0.3351	0.0000	14	937
	Н	-2.5759	-0.9827	0.8894	15	955
	н	-3.4430	0.2924	0.0000	16	983
	н	-2.5760	-0.9827	-0.8894	17	987
					18	1157
					19	1185
					20	1247
					21	1248
					22	1287
					23	1374
					24	1418
					25	1427
					26	1475
					27	1475
					28	1477
					29	1495
					30	1516
					31	1522
					32	1555
					33	1596
					34	2866
					35	2949
					36	3168
					37	3177

		38	3206
		39	3207
		40	3219
		41	3228
		42	3276
		43	3283
		44	3285
		45	3286
		ZPE	425.58 kJ/mol

pent-1-yl						
Level	EVB					
Energy / (kJ mol ⁻¹)	Structure	x/Å	y / Å	z/ Å		Frequency / (cm ⁻¹)
-1.42	С	2.5076	-0.2720	0.0741	1	29
	Н	2.5357	-0.9330	0.9540	2	109
	Н	3.3922	0.3820	0.1142	3	139
	Н	2.5944	-0.9032	-0.8236	4	243
	С	1.2174	0.5463	0.0453	5	247
	Н	1.1650	1.1877	0.9385	6	386
	Н	1.2229	1.2171	-0.8276	7	466
	С	-0.0299	-0.3346	-0.0100	8	580
	Н	-0.0383	-1.0073	0.8616	9	735
	Н	0.0187	-0.9779	-0.9022	10	752
	С	-1.3281	0.4702	-0.0383	11	842
	Н	-1.3104	1.1423	-0.9100	12	867
	Н	-1.3649	1.1157	0.8527	13	896
	С	-2.5496	-0.3942	-0.0888	14	911
	Н	-2.4838	-1.4589	0.1391	15	968
	Н	-3.5421	0.0478	-0.1846	16	971
					17	1078
					18	1162
					19	1170
					20	1236
					21	1247
					22	1288
					23	1372
					24	1404
					25	1449
					26	1473
					27	1483
					28	1511
					29	1520
					30	1572

		31	1674
		32	2730
		33	2890
		34	2999
		35	3139
		36	3183
		37	3207
		38	3217
		39	3223
		40	3247
		41	3277
		42	3283
		ZPE	383.83 kJ/mol

pent-2-yl						
Level	EVB					
Energy / (kJ mol ⁻¹)	Structure	x / Å	y / Å	z/ Å		Frequency / (cm ⁻¹)
-1.32	С	2.5335	-0.3299	0.0057	1	88
	Н	2.6001	-0.8499	-0.9624	2	126
	Н	3.4301	0.2997	0.1129	3	190
	Н	2.5599	-1.0925	0.7992	4	229
	С	1.2576	0.5075	0.0922	5	241
	Н	1.2258	1.0371	1.0568	6	391
	Н	1.2652	1.2786	-0.6935	7	451
	С	-0.0066	-0.3379	-0.0527	8	572
	Н	0.0241	-0.8699	-1.0161	9	719
	Н	-0.0122	-1.1139	0.7283	10	766
	С	-1.2699	0.4630	0.0335	11	843
	Н	-1.2209	1.4541	0.4959	12	893
	С	-2.5994	-0.2156	-0.0910	13	916
	Н	-2.6930	-0.7281	-1.0608	14	919
	Н	-3.4253	0.5078	-0.0119	15	973
	Н	-2.7351	-0.9688	0.7003	16	1047
					17	1086
					18	1187
					19	1205
					20	1232
					21	1279
					22	1370
					23	1407
					24	1419
					25	1469
					26	1472

		27	1477
		28	1510
		29	1532
		30	1577
		31	1774
		32	2839
		33	2878
		34	2986
		35	3073
		36	3179
		37	3194
		38	3214
		39	3265
		40	3278
		41	3282
		42	3285
		ZPE	387.78 kJ/mol

pent-3-yl						
Level	EVB					
Energy / (kJ mol ⁻¹)	Structure	x/Å	y / Å	z/ Å		Frequency / (cm ⁻¹)
-1.76	С	2.5177	-0.4122	0.0408	1	88
	Н	2.5079	-1.0051	0.9684	2	92
	Н	3.4602	0.1557	0.0121	3	218
	Н	2.5198	-1.1146	-0.8068	4	254
	С	1.3089	0.5200	-0.0249	5	270
	Н	1.3453	1.2300	0.8156	6	398
	Н	1.3572	1.1213	-0.9457	7	449
	С	0.0051	-0.2169	0.0118	8	622
	Н	-0.0021	-1.2432	0.3984	9	665
	С	-1.2927	0.5288	-0.0495	10	798
	Н	-1.3194	1.1304	-0.9710	11	824
	Н	-1.3401	1.2392	0.7901	12	895
	С	-2.5089	-0.3951	-0.0067	13	913
	Н	-2.5207	-0.9878	0.9209	14	968
	Н	-3.4468	0.1793	-0.0532	15	975
	н	-2.4998	-1.0975	-0.8542	16	986
					17	1112
					18	1170
					19	1219
					20	1223
					21	1242
					22	1354

		23	1415
		24	1453
		25	1472
		26	1477
		27	1479
		28	1526
		29	1531
		30	1563
		31	1782
		32	2858
		33	2937
		34	2955
		35	3125
		36	3179
		37	3187
		38	3230
		39	3239
		40	3280
		41	3283
		42	3285
		ZPE	388.74 kJ/mol

Entrance channel complex

pentane + Cl 1 pos								
Level	EVB							
Energy /						Frequency /		
(kJ mol⁻¹)	Structure:	x/A	y/A	z / A		(cm⁻¹)		
-5.69	С	4.33076	0.41129	0.00001	1	3		
	Н	4.36548	-0.23769	0.89061	2	15		
	Н	5.23927	1.03412	0.00002	3	39		
	Н	4.36549	-0.23769	-0.89059	4	102		
	С	3.05926	1.26824	0	5	119		
	Н	3.05661	1.9295	0.88504	6	246		
	Н	3.05662	1.9295	-0.88505	7	248		
	С	1.77962	0.42465	0	8	251		
	Н	1.77962	-0.23863	0.88559	9	379		
	Н	1.77961	-0.23861	-0.88562	10	503		
	С	0.49998	1.26824	0.00001	11	766		
	Н	0.50262	1.92951	-0.88502	12	804		
	н	0.50262	1.92949	0.88506	13	853		
	С	-0.77152	0.41129	0.00001	14	900		
	Н	-0.80624	-0.23771	0.89059	15	906		
	Н	-1.68003	1.03412	0.00002	16	909		

Н	-0.80625	-0.23768	-0.8906	17	938
CI	-3.66093	-1.53608	-0.00001	18	1037
				19	1055
				20	1084
				21	1157
				22	1217
				23	1247
				24	1248
				25	1343
				26	1427
				27	1475
				28	1475
				29	1478
				30	1478
				31	1485
				32	1496
				33	1516
				34	1523
				35	1555
				36	1599
				37	3168
				38	3168
				39	3207
				40	3212
				41	3219
				42	3276
				43	3280
				44	3283
				45	3286
				46	3286
				47	3286
				48	3287
				ZPE	435.64 kJ/mol

pentane + Cl 2 pos							
Level	EVB						
Energy / (kJ mol ⁻¹)	Structure:	x / Å	y / Å	z / Å		Frequency / (cm ⁻¹)	
-9.02	С	2.395	-1.7003	0	1	28	
	н	2.42972	-2.34928	0.8906	2	37	
	н	3.30351	-1.07747	0	3	48	
	н	2.42974	-2.34928	-0.8906	4	101	
	С	1.1235	-0.84335	-0.00002	5	125	
	н	1.12086	-0.18209	0.88502	6	246	

н	1.12087	-0.1821	-0.88507	7	247
С	-0.15614	-1.68695	-0.00002	8	252
н	-0.15613	-2.35022	0.88558	9	378
н	-0.15614	-2.3502	-0.88563	10	503
С	-1.43577	-0.84335	0	11	768
н	-1.43314	-0.18208	-0.88504	12	809
н	-1.43313	-0.1821	0.88505	13	853
С	-2.70728	-1.7003	-0.00001	14	900
н	-2.742	-2.3493	0.89058	15	906
н	-3.61578	-1.07747	0.00001	16	909
н	-2.74201	-2.34927	-0.89062	17	937
CI	0.32121	2.80777	0.00003	18	1036
				19	1055
				20	1084
				21	1157
				22	1218
				23	1248
				24	1249
				25	1343
				26	1427
				27	1475
				28	1475
				29	1478
				30	1478
				31	1486
				32	1496
				33	1516
				34	1523
				35	1556
				36	1599
				37	3168
				38	3168
				39	3207
				40	3213
				41	3220
				42	3277
				43	3281
				44	3283
				45	3285
				46	3286
				47	3287
				48	3288
				ZPE	436.08 kJ/mol

pentane + Cl 3 pos						
Level	EVB					
Energy / (kJ mol ⁻¹)	Structure:	x/Å	y / Å	z / Å		Frequency / (cm ⁻¹)
-9.26	С	2.08959	0.90315	0.00003	1	20
	Н	2.12431	0.25417	0.89063	2	34
	Н	2.9981	1.52598	0.00003	3	49
	Н	2.12433	0.25417	-0.89057	4	105
	С	0.81809	1.7601	0.00001	5	121
	Н	0.81545	2.42136	0.88505	6	248
	Н	0.81546	2.42135	-0.88504	7	250
	С	-0.46155	0.9165	0.00001	8	257
	Н	-0.46154	0.25323	0.88561	9	378
	Н	-0.46155	0.25325	-0.8856	10	503
	С	-1.74118	1.7601	0.00003	11	770
	Н	-1.73855	2.42137	-0.88501	12	804
	Н	-1.73854	2.42135	0.88508	13	853
	С	-3.01269	0.90315	0.00002	14	902
	Н	-3.04741	0.25415	0.89061	15	906
	Н	-3.92119	1.52598	0.00004	16	909
	Н	-3.04742	0.25418	-0.89059	17	937
	Cl	0.94947	-2.5479	-0.00004	18	1036
					19	1054
					20	1083
					21	1158
					22	1217
					23	1247
					24	1249
					25	1342
					26	1427
					27	1475
					28	1475
					29	1478
					30	1478
					31	1485
					32	1497
					33	1518
					34	1523
					35	1555
					36	1599
					37	3168
					38	3169
					39	3208

		40	3212
		41	3220
		42	3277
		43	3280
		44	3283
		45	3286
		46	3286
		47	3286
		48	3288
		ZPE	436.05 kJ/mol

Exit channel complex

pent-1-yl + HCl						
Level	EVB					
Energy / (kJ mol ⁻¹)	Structure:	x / Å	y / Å	z / Å		Frequency / (cm ⁻¹)
-11.14	С	3.1792	0.1780	1.2160	1	35
	Н	3.2158	-0.4839	2.0949	2	54
	Н	4.0620	0.8348	1.2504	3	86
	Н	3.2611	-0.4519	0.3169	4	114
	С	1.8863	0.9922	1.1976	5	143
	Н	1.8378	1.6327	2.0917	6	202
	Н	1.8835	1.6637	0.3252	7	226
	С	0.6424	0.1072	1.1494	8	247
	Н	0.6381	-0.5627	2.0232	9	252
	Н	0.6938	-0.5396	0.2604	10	266
	С	-0.6583	0.9079	1.1210	11	393
	Н	-0.6367	1.5906	0.2578	12	481
	Н	-0.7041	1.5426	2.0193	13	683
	С	-1.8764	0.0387	1.0505	14	785
	Н	-1.8468	-0.9830	1.4329	15	886
	н	-2.8532	0.4698	0.8252	16	897
	Н	-1.6203	-0.6818	-1.0692	17	904
	Cl	-1.3146	-0.8777	-2.3041	18	942
					19	1004
					20	1063
					21	1064
					22	1093
					23	1202
					24	1219
					25	1237
					26	1302
					27	1414

		28	1464
		29	1466
		30	1475
		31	1478
		32	1488
		33	1514
		34	1534
		35	1583
		36	1760
		37	2811
		38	2956
		39	3168
		40	3173
		41	3210
		42	3219
		43	3277
		44	3282
		45	3283
		46	3285
		47	3285
		48	3287
		ZPE	419.86 kJ/mol

pent-2-yl + HCl						
Level	EVB					
Energy / (kJ mol ⁻¹)	Structure:	x / Å	y / Å	z / Å		Frequency / (cm ⁻¹)
-22.88	С	-0.6674	1.8586	2.5307	1	31
	Н	0.4143	1.8127	2.7301	2	33
	Н	-0.9593	2.9194	2.4948	3	97
	Н	-1.1864	1.3944	3.3834	4	107
	С	-1.0147	1.1466	1.2238	5	127
	Н	-2.0956	1.2277	1.0321	6	170
	Н	-0.5057	1.6445	0.3846	7	229
	С	-0.6226	-0.3298	1.2422	8	240
	Н	0.4560	-0.4141	1.4465	9	251
	Н	-1.1349	-0.8282	2.0796	10	261
	С	-0.9451	-1.0456	-0.0352	11	388
	Н	-1.7426	-0.6332	-0.6626	12	498
	Н	0.5261	-0.1500	-1.3110	13	744
	С	-0.5956	-2.4961	-0.1793	14	785
	Н	0.4834	-2.6598	-0.0353	15	844
	Н	-0.8627	-2.8731	-1.1784	16	859
	Н	-1.1290	-3.1074	0.5647	17	903

CI	1.5394	0.3447	-1.9519	18	910
				19	951
				20	1008
				21	1065
				22	1098
				23	1162
				24	1203
				25	1239
				26	1247
				27	1342
				28	1404
				29	1460
				30	1475
				31	1478
				32	1491
				33	1512
				34	1520
				35	1572
				36	1673
				37	2899
				38	2956
				39	2999
				40	3168
				41	3209
				42	3213
				43	3221
				44	3277
				45	3280
				46	3284
				47	3285
				48	3287
				ZPE	415.41 kJ/mol

pent-3-yl + HCl						
Level	EVB					
Energy / (kJ mol ⁻¹)	Structure:	x / Å	y/Å	z / Å		Frequency / (cm ⁻¹)
-24.88	С	2.48188	0.07117	1.14208	1	44
	Н	2.4757	-0.57289	2.03479	2	47
	Н	3.41279	0.65848	1.15512	3	75
	Н	2.50728	-0.58253	0.25697	4	95
	С	1.2553	0.98187	1.11714	5	157
	Н	1.27055	1.64446	1.99606	6	209
	Н	1.29862	1.63469	0.23184	7	231

	1				
С	-0.03442	0.21783	1.1016	8	247
 н	-0.03407	-0.80078	1.50921	9	267
 н	0.0333	-0.59104	-0.91058	10	289
 С	-1.34061	0.95096	1.04221	11	399
 н	-1.3483	1.60318	0.15544	12	478
 н	-1.42226	1.6124	1.91833	13	670
 С	-2.54461	0.01137	0.99699	14	789
 н	-2.57462	-0.63298	1.88901	15	870
 Н	-3.4884	0.57638	0.95591	16	873
 н	-2.50337	-0.64215	0.11233	17	914
 CI	0.07321	-0.8773	-2.17442	18	984
				19	1009
				20	1039
				21	1066
				22	1108
				23	1203
				24	1221
				25	1224
				26	1272
				27	1453
				28	1470
				29	1478
				30	1480
				31	1480
				32	1483
				33	1525
				34	1533
				35	1562
				36	1771
				37	2826
				38	2954
				39	3169
				40	3169
				41	3214
				42	3216
				43	3279
				44	3280
				45	3286
				46	3286
				47	3287
				48	3287
				ZPE	420.31 kJ/mol

Transition State

pent-1-yl + HCl	TS					
Level	EVB					
Energy /						Frequency /
(kJ mol⁻¹)	Structure:	x/Å	y / Å	z / Å		(cm ⁻¹)
14.20	С	3.58E+00	-3.27E-01	2.70E-02	imag	-1660
	н	3.78E+00	-1.49E-01	1.10E+00	1	47
	н	4.52E+00	-1.68E-01	-5.23E-01	2	69
	Н	3.29E+00	-1.38E+00	-9.03E-02	3	115
	С	2.47E+00	5.98E-01	-4.87E-01	4	168
	Н	2.79E+00	1.65E+00	-3.86E-01	5	242
	Н	2.31E+00	4.19E-01	-1.56E+00	6	250
	С	1.15E+00	4.05E-01	2.58E-01	7	381
	Н	1.31E+00	5.97E-01	1.33E+00	8	401
	Н	8.37E-01	-6.45E-01	1.70E-01	9	445
	С	4.31E-02	1.32E+00	-2.58E-01	10	507
	Н	-1.36E-01	1.11E+00	-1.32E+00	11	760
	н	3.95E-01	2.36E+00	-2.03E-01	12	800
	С	-1.25E+00	1.18E+00	5.22E-01	13	856
	Н	-1.16E+00	1.07E+00	1.61E+00	14	898
	Н	-2.09E+00	1.80E+00	1.91E-01	15	908
	н	-1.78E+00	-3.32E-02	2.33E-01	16	917
	Cl	-2.48E+00	-1.30E+00	-3.79E-02	17	982
					18	1006
					19	1047
					20	1069
					21	1088
					22	1149
					23	1210
					24	1241
					25	1248
					26	1343
					27	1416
					28	1465
					29	1475
					30	1478
					31	1488
					32	1493
					33	1515
					34	1524
					35	1569
					36	1624
					37	3036
					38	3151

		39	3169
		40	3209
		41	3213
		42	3221
		43	3278
		44	3281
		45	3285
		46	3286
		47	3287
		ZPE	416.34 kJ/mol

pent-2-yl + HCl TS							
Level	EVB						
Energy /						Frequency /	
(kJ mol ⁻¹)	Structure:	x/Å	y / Å	z / Å		(cm⁻¹)	
-4.55	С	2.35E+00	-2.13E+00	-1.71E-01	imag	-94	
	Н	2.43E+00	-2.03E+00	-1.26E+00	1	32	
	Н	3.34E+00	-1.94E+00	2.62E-01	2	57	
	Н	2.08E+00	-3.18E+00	4.75E-02	3	103	
	С	1.31E+00	-1.17E+00	3.93E-01	4	135	
	Н	1.26E+00	-1.27E+00	1.49E+00	5	222	
	Н	1.61E+00	-1.31E-01	1.84E-01	6	229	
	С	-8.30E-02	-1.41E+00	-1.92E-01	7	270	
	Н	-4.20E-02	-1.30E+00	-1.29E+00	8	341	
	Н	-3.86E-01	-2.45E+00	6.58E-03	9	444	
	С	-1.14E+00	-4.61E-01	3.73E-01	10	505	
	Н	-1.18E+00	-5.71E-01	1.47E+00	11	628	
	Н	-8.29E-01	5.79E-01	1.72E-01	12	731	
	С	-2.52E+00	-7.07E-01	-2.22E-01	13	817	
	Н	-2.51E+00	-5.78E-01	-1.32E+00	14	858	
	Н	-3.26E+00	-5.60E-03	1.92E-01	15	899	
	Н	-2.87E+00	-1.73E+00	-7.19E-03	16	910	
	Cl	1.73E-01	2.75E+00	-6.88E-03	17	951	
					18	993	
					19	1038	
					20	1087	
					21	1131	
					22	1221	
					23	1246	
					24	1251	
					25	1282	
					26	1317	
					27	1375	
					28	1455	

		29	1476
		30	1479
		31	1489
		32	1512
		33	1523
		34	1550
		35	1583
		36	2792
		37	2883
		38	3013
		39	3135
		40	3160
		41	3193
		42	3208
		43	3231
		44	3253
		45	3269
		46	3278
		47	3293
		ZPE	417.76 kJ/mol

pent-3-yl + HCl TS							
Level	EVB						
Energy / (kJ mol ⁻¹)	Structure:	x / Å	y / Å	z / Å		Frequency / (cm ⁻¹)	
-2.82	С	2.24E+00	1.26E+00	3.55E-01	imag	-1499	
	Н	2.18E+00	1.35E+00	1.45E+00	1	54	
	Н	3.02E+00	1.94E+00	-3.50E-03	2	83	
	Н	2.56E+00	2.32E-01	1.21E-01	3	120	
	С	8.94E-01	1.57E+00	-2.97E-01	4	181	
	Н	6.55E-01	2.63E+00	-1.16E-01	5	222	
	Н	9.61E-01	1.46E+00	-1.39E+00	6	255	
	С	-2.47E-01	7.23E-01	2.33E-01	7	284	
	Н	-2.67E-01	6.10E-01	1.33E+00	8	373	
	Н	6.66E-02	-5.61E-01	-2.42E-02	9	406	
	С	-1.59E+00	1.07E+00	-3.79E-01	10	498	
	Н	-1.57E+00	9.09E-01	-1.47E+00	11	791	
	Н	-1.77E+00	2.15E+00	-2.39E-01	12	801	
	С	-2.77E+00	3.21E-01	2.46E-01	13	871	
	Н	-2.81E+00	4.82E-01	1.33E+00	14	926	
	Н	-3.73E+00	6.72E-01	-1.74E-01	15	957	
	Н	-2.69E+00	-7.60E-01	5.91E-02	16	965	
	CI	5.92E-01	-2.02E+00	-3.47E-02	17	1005	
					18	1028	

			4000
		19	1064
		20	1090
		21	1126
		22	1172
		23	1220
		24	1246
		25	1295
		26	1445
		27	1470
		28	1472
		29	1480
		30	1482
		31	1484
		32	1497
		33	1527
		34	1557
		35	1589
		36	1637
		37	3109
		38	3169
		39	3173
		40	3203
		41	3206
		42	3273
		43	3274
		44	3281
		45	3286
		46	3294
		47	3295
		ZPE	420.11 kJ/mol

References

- 1 A. D. Estillore, L. M. Visger and A. G. Suits, *J. Chem. Phys.*, 2010, **132**, 164313.
- 2 R. A. Rose, S. J. Greaves and A. J. Orr-Ewing, *Mol. Phys.*, 2010, **108**, 981–992.
- 3 O. Tkac, A. G. Sage, S. J. Greaves, A. J. Orr-Ewing, P. J. Dagdigian, Q. Ma and M. H. Alexander, *Chem. Sci.*, 2013, **4**, 4199–4211.
- 4 T. J. Preston, G. T. Dunning, A. J. Orr-Ewing and S. A. Vázquez, *J. Phys. Chem. A*, 2014, **118**, 5595–5607.
- 5 R. N. Zare, *Angular momentum: understanding spatial aspects in chemistry and physics*, Wiley, 1988.