Supporting Information

Investigating the behavior of various cocatalysts on LaTaON₂ photoanode for visible light water splitting

Wenping Si,^a Daniele Pergolesi,^a Fatima Haydous,^a Aline Fluri,^a Alexander Wokaun^a and Thomas Lippert^{a,b*}

^a Thin Films and Interfaces, Research with Neutrons and Muons Department, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

^b Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland

Fig. S1 Kubelka–Munk absorbance for LaTaON₂, NiO_x–LaTaON₂, Ni_{0.7}Fe_{0.3}O_x–LaTaON₂, and CoO_x–LaTaON₂ as well as post–loaded IrO_x –LaTaON₂.

In comparison with the bare LaTaON₂, only slight changes occur in the absorbance at 405 nm (light source for PEC measurement) for the cocatalysts loaded LaTaON₂. This is understandable if considering quite low nominal loading amount (2 wt%) of these cocatalysts. In addition, the absorption edge is also slightly blue shifted after loading cocatalysts, which could be due to the shading effect of cocatalysts.

Fig. S2 Potentiodynamic measurements in 0.5 M NaOH (pH=13.0) for NiO_x-LaTaON₂ after treatment in air and under NH₃.

Fig. S3 Potentiodynamic measurements in 0.5 M NaOH (pH=13.0) for sputtered Ni–LaTaON₂ and CuO_x–LaTaON₂ in comparison to as prepared–LaTaON₂.

H₂O₂ as hole scavenger

 H_2O_2/O_2 has a relatively negative oxidation potential (0.682 V_{RHE}) and its rate constant is 10 to 100 times higher than that of water.¹ Thus, H_2O_2 is an efficient hole scavenger in electrolyte to suppress surface recombinations. Holes that come to the surface will be immediately captured and participate in the oxidation of H_2O_2 . Assuming that all samples have the same bulk recombination, any difference seen in the photocurrent of H_2O_2 oxidation should therefore be due to the recombination at the interfaces between LaTaON₂ and the cocatalysts as well as the electrolyte.

As shown in Fig. S3, the photocurrent of NiO_x -LaTaON₂ is the highest followed by that of $Ni_{0.7}Fe_{0.3}O_x$ -LaTaON₂, both higher than that of bare LaTaON₂. The improvement in the photocurrent indicates a reduced recombination and good passivation at the interface of LaTaON₂ and the cocatalysts, which is consistent with our conclusions.

 CoO_x - and IrO_x -loaded LaTaON₂ exhibit huge background cathodic and anodic currents, which makes the chopped photocurrent characteristics undetectable. This is probably due to their high catalytic activity for H₂O₂ oxidation and the photocurrent-doubling phenomena, which causes the oxidized form of H₂O₂ to be oxidized again through injection of an electron into the conduction band of the semiconductor. ¹⁻⁴ The oxidation procedures can be described as follows: H₂O₂ + h⁺ \rightarrow 2H⁺ + O₂⁻ and O₂⁻ \rightarrow O₂ +e^{-.4} In comparison to NiO_x- and Ni_{0.7}Fe_{0.3}O_x-LaTaON₂, CoO_x- and IrO_x-loaded LaTaON₂ have higher background currents, which is also consistent with the PEC measurement without H₂O₂, indicating the more dependency of the system's photocurrent on the catalytic effect of CoO_x and IrO_x.

However, the presence of a hole scavenger and cocatalyst still did not significantly enhance the photocurrent up to the mA cm⁻² range, implying that the PEC performance is not limited by surface or interface recombination, but rather by the recombination or low electronic conductivity in the bulk of LaTaON₂.

Fig. S4 PEC performance under chopped light in 0.5 M NaOH with the presence of 0.1 M H_2O_2 for pre-loaded NiO_x-LaTaON₂, Ni_{0.7}Fe_{0.3}O_x-LaTaON₂, and CoO_x-LaTaON₂ as well as post-loaded IrO_x-LaTaON₂. (a). Zoomed-in view of PEC performance. (b). PEC performance between 0.6–1.8 V_{RHE}, calculated based on the illuminated area of 3 mm².

References

- 1. H. Dotan, K. Sivula, M. Gratzel, A. Rothschild and S. C. Warren, Energy Environ. Sci., 2011, 4, 958–964.
- B. P. Minks, G. Oskam, D. Vanmaekelbergh and J. J. Kelly, J. Electroanal. Chem. Interfacial Electrochem., 1989, 273, 119–131.
- 3. A. Theuwis, I. E. Vermeir and W. P. Gomes, J. Electroanal. Chem., 1996, 410, 31–42.
- 4. F. F. Abdi and R. van de Krol, J. Phys. Chem. C, 2012, 116, 9398–9404.
- 5. M. Higashi, Y. Yamanaka, O. Tomita and R. Abe, APL Materials, 2015, 3, 104418.