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Fig. S1: Polyhedral model of optimized structure of a-MnO, 0.375H,O compound. It is
observed that the tunnel accommodated with two water molecules distorts the crystal structure.
Thus, it gives lesser stability as compared to a-MnO, 0.25H,0O compound.

Table. S1. Number of sites obeying GKA rule (two Mn atoms that are connected through O(sp?)
atoms) and triangular (A) rule (in the double chain) in different types of magnetic
configurations of a-Mn02.0.25 H20.

Type AFM-C AFM-C2 AFM-A2 FM FIM

All4sitesarenot | All 4 sites are | All4sitesarenot | All 4 sites are | All 4 sites are
obeyed obeyed obeyed obeyed obeyed

All 4 sites are | All 4 sites are | All4sitesarenot | All4sitesarenot | Only 2 sites
obeyed obeyed obeyed obeyed are obeyed

A rule

GKA rule
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Fig. S2 (a). Exchange energies (J1, J2) are shown with respect to triaxial strain. (b) Optimized
structure distorted at 11% tensile strained a-MnO,.0.25H,0. It is observed that at 11% tensile
strain, the linkage between double chains is broken.
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Fig. S3. Exchange energy (J2) for unhydrated a-MnO, compound. It shows that the FM
ordering is induced by an application of 3% tensile strain.
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Fig. S4: Variation of (a) Mn-Mn distance and (b) Mn-O-Mn angle with respect to the triaxial
strain introduced 0-MnQO,.0.25H,O compound. All the values are given for AFM-C2

configuration.

Table. S2. Comparison of various parameters of unstrained and 4% tensile strained a-MnO,.
0.25H,0 compound, calculated using different exchange correlation functionals (PW91 and

PBE).

Unstrained 4% tensile strain
Moment on | PW91 32 34
Mn atoms | PBE 3.1 33
(1)
Exchange PWO1 -16 10
Energy
(A :EafmCZ—fm) PBE 9 19
(meV/fu.)
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Fig. S5: The distortion in geometry of MnOg octahedra are shown for various triaxial strained
a-MnO, compounds. Mn-O bond distances (in A) are given in the diagram.

(b)

Fig. S6: Charge transfer between sorbent and a-MnQO, framework (Ap = pg-Mn02 .0.25% — Po-MnO2
— px) 1s shown for 0-MnO, 0.25X compound, where X = Xe (a) and NH; (b). It demonstrates
that the small charge transfer is occurred between the tunnel species and lattice oxygen.
Isosurface for respective compounds are plotted for values of 3x102 and 4x103 e/A3
respectively. Yellow (blue) isosurface represents charge accumulation (depletion) region.



Table. S3. Lattice parameters, relative energy of a-MnO, compound having various tunnel
species with respect to different (AFM-C2, FM) magnetic configurations and local magnetic
moment (absolute average value) of Mn, O(sp?), O(sp?) atoms in their stable ground state
magnetic configurations.

Lattice parameters (A) coﬁ?g%lr;z?if)ns Local magnetic moment (jiz)
Tunqel (meV/fu.)
Species

a b ¢ | AFM-C2 | FM Mn | O(sp’) | O(sp?)
Ar 983 | 9.83 | 2.90 0 12 3.2 0.2 0.0
Kr 986 | 9.87 | 2.92 0 8 3.3 0.2 0.0
Xe 999 | 9.99 | 2.96 28 0 3.4 0.2 0.1
NH; 10.04 | 973 | 2.89 20 0 3.4 0.2 0.1
CH, 9.69 | 9.89 | 2.90 0 13 3.2 0.2 0.0
H,S 992 | 998 | 2.79 0 83 3.0 0.1 0.0
Li,O 9.80 | 10.14 | 2.89 2 0 35 02 0.1




