Supporting Information

Tuning of intrinsic antiferromagnetic to ferromagnetic ordering in microporous α -MnO₂ by inducing tensile strain

G.Kruthika^{a,b}, J.Karthikeyan^{a,b}, and P.Murugan^{a,b*}

^aFunctional Materials Division, CSIR Central Electrochemical Research Institute (CECRI), Karaikudi–630 003, Tamil Nadu, India

^bAcademy of Scientific & Innovative Research, CECRI, India

*E-mail: murugan@cecri.res.in.

Fig. S1: Polyhedral model of optimized structure of α -MnO₂ 0.375H₂O compound. It is observed that the tunnel accommodated with two water molecules distorts the crystal structure. Thus, it gives lesser stability as compared to α -MnO₂ 0.25H₂O compound.

Table. S1. Number of sites obeying GKA rule (two Mn atoms that are connected through $O(sp^2)$ atoms) and triangular (Δ) rule (in the double chain) in different types of magnetic configurations of α -MnO₂.0.25 H₂O.

Туре	AFM-C	AFM-C2	AFM-A2	FM	FIM
Δ rule	All 4 sites are not obeyed	All 4 sites are obeyed	All 4 sites are not obeyed	All 4 sites are obeyed	All 4 sites are obeyed
GKA rule	All 4 sites are obeyed	All 4 sites are obeyed	All 4 sites are not obeyed	All 4 sites are not obeyed	Only 2 sites are obeyed

Fig. S2 (a). Exchange energies (J1, J2) are shown with respect to triaxial strain. (b) Optimized structure distorted at 11% tensile strained α -MnO₂.0.25H₂O. It is observed that at 11% tensile strain, the linkage between double chains is broken.

Fig. S3. Exchange energy (J2) for unhydrated α -MnO₂ compound. It shows that the FM ordering is induced by an application of 3% tensile strain.

Fig. S4: Variation of (a) Mn-Mn distance and (b) Mn-O-Mn angle with respect to the triaxial strain introduced α -MnO₂.0.25H₂O compound. All the values are given for AFM-C2 configuration.

Table. S2. Comparison of various parameters of unstrained and 4% tensile strained α -MnO₂. 0.25H₂O compound, calculated using different exchange correlation functionals (PW91 and PBE).

		Unstrained	4% tensile strain	
Moment on	PW91	3.2	3.4	
Mn atoms	PBE	3.1	3.3	
$(\mu_{\rm B})$				
Exchange	PW91	-16	10	
Energy				
$(\Delta = E_{afmc2-fm})$	PBE	-9	19	
(meV/f.u.)				

Fig. S5: The distortion in geometry of MnO_6 octahedra are shown for various triaxial strained α -MnO₂ compounds. Mn-O bond distances (in Å) are given in the diagram.

Fig. S6: Charge transfer between sorbent and α -MnO₂ framework ($\Delta \rho = \rho_{\alpha-MnO2,0.25X} - \rho_{\alpha-MnO2} - \rho_X$) is shown for α -MnO₂ 0.25*X* compound, where *X* = Xe (a) and NH₃ (b). It demonstrates that the small charge transfer is occurred between the tunnel species and lattice oxygen. Isosurface for respective compounds are plotted for values of 3×10⁻³ and 4×10⁻³ e/Å³ respectively. Yellow (blue) isosurface represents charge accumulation (depletion) region.

Table. S3. Lattice parameters, relative energy of α -MnO₂ compound having various tunnel species with respect to different (AFM-C2, FM) magnetic configurations and local magnetic moment (absolute average value) of Mn, O(sp³), O(sp²) atoms in their stable ground state magnetic configurations.

Tunnel species	Lattice parameters (Å)			Magnetic configurations (meV/f.u.)		Local magnetic moment (µ _B)		
	а	b	С	AFM-C2	FM	Mn	O(sp ³)	O(sp ²)
Ar	9.83	9.83	2.90	0	12	3.2	0.2	0.0
Kr	9.86	9.87	2.92	0	8	3.3	0.2	0.0
Xe	9.99	9.99	2.96	28	0	3.4	0.2	0.1
NH ₃	10.04	9.73	2.89	20	0	3.4	0.2	0.1
CH ₄	9.69	9.89	2.90	0	13	3.2	0.2	0.0
H ₂ S	9.92	9.98	2.79	0	83	3.0	0.1	0.0
Li ₂ O	9.80	10.14	2.89	2	0	3.5	0.2	0.1