Electronic Supplementary Information (ESI)

Dynamics of a bioinert polymer in hydrated states by dielectric relaxation spectroscopy

Toyoaki Hirata,^a Hisao Matsuno,*^{ab} Daisuke Kawaguchi,^c Manabu Inutsuka,^a Tomoyasu Hirai,^a

Masaru Tanaka^d and Keiji Tanaka*ab

^a Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan

^b International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan

^c Education Center for Global Leaders in Molecular Systems for Devices, Kyushu University, Fukuoka 819-0395, Japan

^d Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan

*Authors for correspondence:

Hisao Matsuno h-matsuno@cstf.kyushu-u.ac.jp Keiji Tanaka k-tanaka@cstf.kyushu-u.ac.jp **Thermogravimetry (TG) analyses.** Fig. S1 shows typical TG thermograms of poly(2-methoxyethyl acrylate) (PMEA) with a number average molecular weight (M_n) of 23.5k hydrated under different conditions for 1 week. The weight loss depended on the relative humidity (RH) of atmospheres in which the samples were placed before TG measurements. The water contents (W_w / wt%) in each sample are summarized in Table S1. In addition, the volume fractions of water (ϕ_w / vol%) calculated using the W_w values and density of PMEA and water are shown in Table S1.

Fig. S1. Typical TG thermograms of PMEA-23.5k hydrated under different conditions. All thermograms were standardized in initial weight of each sample.

Table S1. The water contents (W_w) of PMEA hydrated at different atmospheres quantified by TG analyses and the estimated volume fraction of water (ϕ_w) in each PMEA sample.

Sample code	Atmosphere	$W_{ m w}$ / wt%	$\phi_{ m w}$ / vol%
PMEA-23.5k	liquid water	9.2	11
PMEA-23.5k	RH of 84%	4.9	6.1
PMEA-23.5k	RH of 56%	2.5	3.1
PMEA-53.6k	liquid water	9.2	11
PMEA-104k	liquid water	9.1	11

Temperature dependence of dielectric loss. Fig. S2 shows the temperature dependence of dielectric loss (ε ") for PMEA-23.5k in a dried state. Two peaks were observed around 250 and 160 K for each curve, as marked by arrows. Since the temperature position for the ε " peaks was dependent on frequency (*f*), it is clear that the two sets of peaks can be assigned to a release of molecular motions with a different size scale (α - and β -processes, respectively).

Fig. S2. (a) Temperature dependence of dielectric loss (ε'') for PMEA-23.5k in a dried state. Three data sets at 10⁰, 10², and 10⁴ Hz (black, red and blue) are presented.