Electronics Supplementary Information

Organic Sensitizers Featuring Thiophene Derivatives Based Donors with Improved Stability and Photovoltaic Performance

Kai Miao,^a Mao Liang,^{*a,b} Zhihui Wang,^c Chunyao Zhang,^a Zhe Sun,^a Song Xue^{*a}

^aTianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Department of Applied Chemistry, Tianjin University of Technology, Tianjin 300384, PR China. E-mail: liangmao717@126.com; <u>xuesong@ustc.edu.cn</u>

^b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P.R.China.

^c Jiangsu Provincial Key Laboratory of Palygorskite Science and Applied Technology, College of Chemical Engineering, Huaiyin Institute of Technology, Jiangsu 223003, PR China.

List of Contents

Synthesis of M52A	S2-3
Photophysical and electrochemical measurements	S4
Fabrication and Characterization of DSCs	S5-6
Fig. S1. EIS for DSSCs based on the studied dyes measured in the dark under -0.8 V bias	S
displayed in the form of Nyquist plots (a) and Bode phase plots (b)	S7
Fig. S2. CV of sensitized electrodes between 0 to -1.5 V	S7
Fig. S3. Temperature-dependent TG curves of different donor units	S8
Fig. S4. Temperature-dependent TG curves of dyes	S8
Fig. S5. Optimized geometrical configuration of the dyes	S8
¹ H and ¹³ C NMR spectra of synthetic compoundsS	9-20

Scheme S1. Schematic routes for the M52A dye: (a) *t*-BuONa, $Pd_2(dba)_3$, Xphos, toluene, reflux 8 hours; (b) Piperidine, Cyanoacetic acid, CHCl₃/CH₃CN (v/v, 1/2), reflux, 8 hours.

Synthesis of compound 3f

To a 100 mL two-neck round-bottom flask, 20 mL anhydrous toluene, compound 5 (139 mg, 0.36 mmol), compound 6 (233 mg, 0.36 mmol), anhydrous sodium tertbutoxide (105 mg, 1.08 mmol), tris(dibenzylideneacetone) dipalladium (17 mg, 0.02 mmol) and XPhos (52 mg, 0.11 mmol) were added. The mixture was refluxed for 24 hours in the dark under argon. After cooling to room temperature, H₂O and ethyl acetate were added. The organic layer was separated and dried in Na₂SO₄. The solvent was evaporated and the remaining crude product was purified by column chromatography to give desired compound 3f: yellow powder (193 mg, yield: 56.26%). MP: 59-63 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.82 (s, 1H), 7.72 (d, J = 8.52Hz, 1H), 7.54 (d, J = 1.68 Hz, 1H), 7.49 (s, 2H), 7.46 (d, J = 6.28 Hz, 2H), 7.37 (d, J= 8.60 Hz, 1H), 7.29 (s, 1H), 7.21 (dd, J = 8.60 Hz, J = 1.84 Hz, 1H), 7.14 (s, 1H), 7.12 (s, 1H), 7.06 (s, 1H), 7.04 (s, 1H), 7.02 (s, 1H), 6.91 (s, 1H), 6.88 (s, 1H), 6.69 (d, J = 2.32 Hz, 1H), 6.62 (dd, J = 8.60 Hz, J = 2.40 Hz, 1H), 4.05 (t, J = 6.48 Hz, 2H), 3.98 (t, J = 6.38 Hz, 4H), 1.89-1.78 (m, 4H), 1.40-1.37 (m, 9H), 1.30-1.26 (m, 6H), 4.05 (t, 2H), 1.16-1.12 (m, 4H), 0.98-0.92 (m, 7H), 0.77 (t, J = 6.04 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): 182.1, 161.9, 159.5, 155.7, 154.0, 149.8, 147.5, 146.4, 144.1, 144.0, 143.5, 139.3, 138.8, 136.6, 134.1, 127.5, 127.4, 127.1, 126.9, 126.5, 125.8, 123.9, 121.4, 121.1, 120.7, 119.7, 119.5, 117.9, 114.9, 113.5, 106.5, 104.7, 100.7, 68.3, 67.9, 67.7, 31.0, 30.9, 31.8, 30.7, 28.7, 28.6, 28.3, 25.2, 25.0, 22.0, 21.8, 13.5, 13.3. HRMS (EIS) cacld for C₅₅H₅₉N₂O₄S₄ (M+H⁺): 939.3358, found: 939.3348.

Synthesis of compound M52A

To a stirred solution of compound 7 (193 mg, 0.21 mmol) and cyanoacetic acid (26 mg, 0.31 mmol) in acetonitrile (8 mL) was added chloroform (4 mL) and piperidine (61 μ L, 0.56 mmol). The reaction mixture was refluxed for 8 hours. Additional cyanocertic acid (18 mg, 0.33 mmol) and piperdine (40 μ L, 0.36 mmol) were added. The mixture was refluxed continued for 8 hours and then acidified with 1 M hydrochloric acid aqueous solution (30 mL). The crude product was extracted into CH₂Cl₂, washed with water, and dried over anhydrous Na₂SO₄. After removing solvent under reduced pressure, the residue was purified by column chromatography to give desired product, M52A: red power (175mg, yield: 84.62%). MP: 92-95 °C. ¹H NMR (400 MHz, CDCl₃+MeOD- d_4): δ 8.18 (s, 1H), 7.68 (d, J = 8.64 Hz, 1H), 7.49 (s, 2H), 7.43 (m, 3H), 7.31 (d, J = 8.84 Hz, 1H), 7.25 (d, J = 5.12 Hz, 1H), 7.16 (d, J = 8.60 Hz, 1H), 7.09 (s, 1H), 7.07 (s, 1H), 7.01 (s, 1H), 6.99 (s, 1H), 6.96 (s, 1H), 6.86 (s, 1H), 6.84 (s, 1H), 6.64 (s, 1H), 6.57 (d, J = 8.88 Hz, 1H), 4.00 (t, J = 6.56 Hz, 2H), 3.94 (t, J = 6.04 Hz, 4H), 1.84-1.73 (m, 4H), 1.54-1.46 (m, 6H), 1.35-1.32 (m, 6H), 1.23 (s, 4H), 1.09-1.06 (m, 4H), 0.92-0.88 (m, 6H), 1.13 (t, J = 6.44 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): 160.2, 156.3, 154.5, 148.3, 144.5, 144.1, 139.8, 137.3, 134.7, 128.2, 127.8, 127.6, 127.5, 127.1, 126.5, 121.9, 121.7, 121.4, 120.3, 119.8, 118.7, 115.6, 114.3, 107.0, 105.4, 101.4, 68.9, 68.5, 68.3, 31.6, 31.4, 29.3, 29.3, 28.9, 25.8, 25.6, 22.6, 22.4, 14.0, 13.9. HRMS (EIS) cacld for C₅₈H₆₀N₃O₅S₄ (M+H⁺): 1006.3416, found: 1006.3408.

Optical and Electrochemical Measurements.

The absorption spectra of dyes and sensitized films were measured by SHIMADZU UV-2600 spectrophotometer. Fluorescence measurements were carried out with a HITACHI F–4500 fluorescence spectrophotometer.

Cyclic voltammetry (CV) measurements for sensitized films were performed on a Zennium electrochemical workstation (ZAHNER, Germany), with sensitized electrodes as the working electrode, Pt–wires as the counter electrode, and an Ag/AgCl electrode as the reference electrode at a scan rate of 50 mV s⁻¹. Tetrabutylammonium perchlorate (TBAP, 0.1 M) and MeCN were used as supporting electrolyte and solvent, respectively. The results were calibrated using ferrocene as standard. In this work, the LUMO of these dyes were estimated from calculated from *LUMO* = *HOMO–E*_{0–0}. *E*_{0–0} values were estimated from the intersections of normalized absorption and emission spectra $(\lambda_{int}): E_{0-0} = 1240/\lambda_{int}$.

Electrochemical impedance spectroscopy (EIS) in the frequency range from 200 mHz to 100 kHz was performed with a Zennium electrochemical workstation (ZAHNER, Germany) in the dark with the alternate current amplitude set at 10 mV.

Charge densities at open circuit and intensity modulated photovoltage spectroscopy (IMVS) were performed on a Zennium electrochemical workstation (ZAHNER, Germany), which includes a green light emitting diode (LED, 532 nm) and the corresponding control system. The intensity-modulated spectra were measured at room temperature with light intensity ranging from 5 to 75 W m⁻², in modulation frequency ranging from 0.1 Hz to 10 kHz, and with modulation amplitude less than 5% of the light intensity.

Fabrication and Characterization of DSSCs

The TiO_2 paste (particle size, 20 nm) was printed on a conducting glass (Nippon Sheet Glass, Hyogo, Japan, fluorine-doped SnO₂ over layer, sheet resistance of 10 Ω/sq) using a screen printing technique. The film was dried in air at 120 °C for 30 min and calcined at 500 °C for 30 min under flowing oxygen before cooling to room temperature. The heated electrodes were impregnated with a 0.05 M titanium tetrachloride solution in a water-saturated desiccator at 70 °C for 30 min and fired again to give a ca. 3 μ m (for cobalt cells) or 9μ m (for iodine cells) thick mesoscopic TiO₂ film. The TiO₂ electrode was stained by immersing it into a 0.3 mM dye solution in a mixture of DCM/EtOH (v/v, 1:1) and kept at room temperature for 12 hours. The sensitized electrodes were then rinsed with dry ethanol and dried by a dry air flow. Pt catalyst was deposited on the FTO glass by coating with a drop of H₂PtCl₆ solution (40 mM in ethanol) with the heat treatment at 395 °C for 15 min to give photoanode. The sensitized electrode and Pt-counter electrode were assembled into a sandwich type cell by a 25 μ m-thick Surlyn (DuPont) hotmelt gasket and sealed up by heating. The Co-bpy electrolyte, is composed of $0.25 \text{ M} [Co(II)(bpy)_3](PF_6)_2, 0.05 \text{ M} [Co(III) (bpy)_3](PF_6)_3, 0.5 \text{ M} TBP and$

0.1 M LiTFSI in acetonitrile. For comparison, an iodine electrolyte consisting of 0.6 M 1,2–dimethyl–3–n–propylimidazolium iodide (DMPImI), 0.1 M LiTFSI, 0.05 M I_2 and 0.5 M TBP in acetonitrile was formulated.

The photocurrent–voltage (J-V) characteristics of the solar cells were carried out using a Keithley 2400 digital source meter controlled by a computer and a standard AM1.5 solar simulator–Oriel 91160–1000 (300W) SOLAR SIMULATOR 2 x 2 BEAM. The light intensity was calibrated by an Oriel reference solar cell. A metal mask with an aperture area of 0.2 cm² was covered on a testing cell during all measurements. The action spectra of monochromatic incident photon–to–current conversion efficiency (IPCE) for solar cell were performed by using a commercial setup (QTest Station 2000 IPCE Measurement System, CROWNTECH, USA)

Fig. S1. EIS for DSSCs based on the studied dyes measured in the dark under -0.8 V bias displayed in the form of Nyquist plots (a) and Bode phase plots (b).

Fig. S2. CV of sensitized electrodes between 0 to -1.5 V.

Fig. S3. Temperature-dependent TG curves of different donor units. Clearly, TBT is more stable than other donor units in terms of thermal stability.

Fig. S4. Temperature-dependent TG curves of dyes.

Fig. S5. Optimized geometrical configuration of the dyes.

¹H NMR (CDCl₃) spectra of compound 3a

¹³C NMR (CDCl₃) spectra of compound 3a

¹H NMR (CDCl₃) spectra of compound 3b

¹H NMR (CDCl₃) spectra of compound 3c

90 80 70 60 50 40 30 20 10

ppm

190 180 170 160 150 140 130 120 110 100

¹H NMR (CDCl₃) spectra of compound 3d

¹³C NMR (CDCl₃) spectra of compound 3d

¹H NMR (CDCl₃) spectra of compound 3e

¹³C NMR (CDCl₃) spectra of compound 3e

¹H NMR (CDCl₃) spectra of compound 3f

¹³C NMR (CDCl₃) spectra of compound 3f

¹³C NMR (CDCl₃) spectra of compound M52

¹³C NMR (CDCl₃) spectra of compound M53

¹³C NMR (CDCl₃) spectra of compound M56

¹³C NMR (CDCl₃) spectra of compound M57

¹³C NMR (CDCl₃) spectra of compound M55

¹³C NMR (CDCl₃) spectra of compound M52A

