Intramolecular Cation-π Interactions in Protonated Phenylalanine Derivatives

Supporting Information

Weiqiang Fu,¹ Patrick J. J. Carr,¹ Michael J. Lecours,¹ Michael Burt,¹ Rick A. Marta,¹ Vincent Steinmetz,² Eric Fillion,¹ Terrance B. McMahon,¹ W. Scott Hopkins^{1,*}

1. Department of Chemistry, University of Waterloo, Waterloo, ON, Canada, N2L 3G1.

2. Laboratoire Chimie Physique - CLIO, Bâtiment 201, Porte 2, Campus Universitaire d'Orsay, Orsay, France, 91405

Table of Contents

Table S1 Gibbs' Energies and Relative energies of Phe·H ⁺
Phe·H ⁺ : The <i>XYZ</i> atomic coordinates and structures
Phe·H ⁺ : The comparison between experimental IRMPD and calculated IR spectra7
Table S2 Gibbs' Energies and Relative energies of 3F-Phe·H ⁺
3-F-Phe·H ⁺ : The <i>XYZ</i> atomic coordinates and structures
3-F-Phe·H ⁺ : The comparison between experimental IRMPD and calculated IR spectra13
Table S3 Gibbs' Energies and Relative energies of 4-F-Phe·H ⁺ 15
4-F-Phe·H ⁺ : The <i>XYZ</i> atomic coordinates and structures
4-F-Phe·H ⁺ : The comparison between experimental IRMPD and calculated IR spectra19
Table S4 Gibbs' Energies and Relative energies of 2,5-F ₂ -Phe·H ⁺ 20
2,5- F_2 -Phe·H ⁺ : The <i>XYZ</i> atomic coordinates and structures
2,5- F_2 -Phe·H ⁺ : The comparison between experimental IRMPD and calculated IR spectra24
Table S5 Gibbs' Energies and Relative energies of 3,5-F ₂ -Phe·H ⁺ 25
3,5- F_2 -Phe·H ⁺ : The <i>XYZ</i> atomic coordinates and structures
3,5- F_2 -Phe·H ⁺ : The comparison between experimental IRMPD and calculated IR spectra29
Table S6 Gibbs' Energies and Relative energies of F ₅ -Phe·H ⁺ 30
F_5 -Phe·H ⁺ : The XYZ atomic coordinates and structures
F_5 -Phe·H ⁺ : The comparison between experimental IRMPD and calculated IR spectra34
Table S7 Gibbs' Energies and Relative energies of 3-CN-Phe·H ⁺

3-CN-Phe·H ⁺ : The XYZ atomic coordinates and structures	36
3-CN-Phe·H ⁺ : The comparison between experimental IRMPD and calculated IR spectra	39
Table S8 Gibbs' Energies and Relative energies of 3-CF ₃ -Phe·H ⁺	40
3-CF ₃ -Phe·H ⁺ : The <i>XYZ</i> atomic coordinates and structures	41
3-CF ₃ -Phe·H ⁺ : The comparison between experimental IRMPD and calculated IR spectra	46
Table S9 Gibbs' Energies and Relative energies of 3,4-(OMe) ₂ -Phe·H ⁺	48
3,4-(OMe) ₂ -Phe·H ⁺ : The <i>XYZ</i> atomic coordinates and structures	49
3,4-(OMe) ₂ -Phe·H ⁺ : The comparison between experimental IRMPD and calculated IR spectra	a.57
Table S10 Gibbs' Energies and Relative energies of 4-NO ₂ -Phe·H ⁺	60
4-NO ₂ -Phe·H ⁺ : The XYZ atomic coordinates and structures	61
4-NO ₂ -Phe·H ⁺ : The comparison between experimental IRMPD and calculated IR spectra	64
Table S11 Assignments of vibrational modes of fluorinated Phe•H+	65
Table S12 Assignments of vibrational modes of protonated Phe derivatives (different	
EWGs/EDGs)	66
Table S13 The calculated proton affinities and gas phase basicities of Phe and its derivatives a	at
the B3LYP/6-311++G(d,p) level of theory.	67

Summary of Gibbs' energies and relative energies at 298 K are given in kJ/mol. Calculations used the B3LYP functional and 6-311++G(d,p) basis set. The *XYZ* atomic coordinates and calculated IR spectra of isomers with relative energies within 20 kJ/mol are provided.

Phe•H⁺

Table S1 The Gibbs' Energies and Relative energies of Phe $\cdot H^+$			
Phe Isomer	Gibbs (hartree)	Relative energy (kJ/mol)	
Isomer 1	-555.1621	0.00	
Isomer 2	-555.1602	4.95	
Isomer 3	-555.1535	22.78	
Isomer 4	-555.1257	95.68	
Isomer 5	-555.1253	96.63	
Isomer 6	-555.1252	96.86	
Isomer 7	-555.1248	98.12	
Isomer 8	-555.1162	120.52	
Isomer 9	-555.1157	121.93	
Isomer 10	-555.1122	130.97	
Isomer 11	-555.1111	133.91	
Isomer 12	-555.1095	138.06	
Isomer 13	-555.1094	138.53	
Isomer 14	-555.1094	138.56	
Isomer 15	-555.1072	144.17	

		GM, 0.0kJ/mo	ol
Ν	-1.007741	-1.151757	1.052125
Η	-1.142262	-1.144585	2.065677
Н	-0.020042	-1.377529	0.851170
Н	-1.640283	-1.870094	0.662466
С	-1.368653	0.173450	0.412991
Н	-1.226182	0.953359	1.160744
С	-0.459407	0.431546	-0.816569
С	-2.843019	0.051589	0.028115
Н	-0.739278	-0.255498	-1.620804
Н	-0.683252	1.441695	-1.165121
С	1.005532	0.271000	-0.471551
Ο	-3.409272	-1.013892	0.009097
С	1.682253	-0.910569	-0.807267
С	1.693943	1.273998	0.223808
Н	1.182043	-1.675417	-1.395627
С	3.021431	-1.087083	-0.450500
С	3.029187	1.097109	0.575692
Η	1.194825	2.206321	0.469538
Η	3.538359	-1.996760	-0.732118
С	3.693273	-0.085202	0.243928
Н	3.556207	1.886016	1.099170
Н	4.734364	-0.215922	0.513592
0	-3.358615	1.226125	-0.300012
Н	-4.284450	1.117828	-0.578123

Ison	Isomer 2, 5.0kJ/mol			
1.145969	1.653908	-0.854047		
1.370026	2.648287	-0.795000		
0.120231	1.543524	-0.940993		
1.626712	0.860396	0.344181		
2.445041	1.418729	0.805284		
0.481901	0.648992	1.365719		
2.234175	-0.413909	-0.258683		
0.843874	-0.069088	2.103309		
0.321087	1.591790	1.895079		
-0.804467	0.185507	0.715551		
-1.788910	1.122276	0.364014		
-1.022206	-1.166255	0.418971		
-1.671679	2.165619	0.646899		
-2.959095	0.717427	-0.281992		
-2.191501	-1.568716	-0.221415		
-0.290124	-1.910722	0.713469		
-3.718092	1.449319	-0.531665		
-3.157849	-0.628074	-0.579244		
-2.354061	-2.619043	-0.432301		
-4.068454	-0.946540	-1.072197		
2.614259	-1.270272	0.676701		
3.043041	-2.039956	0.264813		
2.365652	-0.553546	-1.450049		
1.585479	1.235404	-1.694201		

Isomer 4, 95.7kJ/mol			
-2.918096	-1.398723	-0.220192	
-3.281527	-1.160286	-1.134963	
-3.652843	-1.356296	0.474083	
-1.706438	-0.721128	0.134937	
-1.407074	-1.051539	1.141295	

	Iso	mer 3, 22.8kJ	/mol
Ν	2.967850	-1.234204	0.153791
Н	3.574616	-1.451565	-0.641364
Н	2.857584	-2.080683	0.717810
Н	3.436293	-0.493356	0.708296
С	1.624108	-0.656744	-0.278037

Η	1.374084	-1.065061	-1.256633	-0.544250	-1.093334	-0.836350
С	0.553470	-1.035115	0.775145	-1.829636	0.792397	0.300651
С	1.886497	0.851737	-0.359887	-0.553617	-2.183953	-0.871893
Н	0.552010	-2.129150	0.854796	-0.792564	-0.742863	-1.842532
Н	0.860733	-0.634276	1.746549	0.822585	-0.583447	-0.419443
С	-0.837994	-0.548961	0.430250	1.489619	0.396479	-1.174824
0	2.793793	1.355542	0.261145	1.457587	-1.097057	0.724794
С	-1.401422	0.526966	1.121048	1.039494	0.772619	-2.088914
С	-1.578233	-1.182123	-0.573718	2.752139	0.858921	-0.788749
Н	-0.847606	1.012318	1.918773	2.713266	-0.636460	1.104772
С	-2.683678	0.971980	0.804448	0.978358	-1.879466	1.304957
С	-2.857493	-0.735346	-0.892176	3.257158	1.605265	-1.390134
Н	-1.167550	-2.038434	-1.101054	3.361566	0.345580	0.351043
Н	-3.116111	1.800942	1.352058	3.194402	-1.050371	1.982965
С	-3.410828	0.344246	-0.204436	4.342108	0.697551	0.648147
Η	-3.426043	-1.235610	-1.667052	-0.845402	1.605856	0.348625
Н	-4.409489	0.687130	-0.447363	0.028775	1.157987	0.137567
0	1.028194	1.471588	-1.144553	-3.008269	1.288393	0.431411
Н	1.194067	2.430294	-1.129919	 -2.995266	2.256719	0.559491

Phe·H⁺: The comparison between experimental IRMPD and calculated IR spectra

3-F-Phe•H⁺

Table S2 The Gibbs' Energies and Relative energies of 3F-Phe·H ⁺			
3F-Phe Isomer	Gibbs (hartree)	Relative energy (kJ/mol)	
Isomer 1	-654.4359	0.00	
Isomer 2	-654.4356	0.64	
Isomer 3	-654.4345	3.53	
Isomer 4	-654.4343	4.05	
Isomer 5	-654.4306	13.85	
Isomer 6	-654.4305	13.96	
Isomer 7	-654.4295	16.71	
Isomer 8	-654.4293	17.09	
Isomer 9	-654.4281	20.36	
Isomer 10	-654.4223	35.48	
Isomer 11	-654.4220	36.34	
Isomer 12	-654.4217	37.14	
Isomer 13	-654.4216	37.42	
Isomer 14	-654.4212	38.52	
Isomer 15	-654.4209	39.30	

3-F-Phe·H⁺: The *XYZ* atomic coordinates and structures

	GM, 0.0kJ/mol			
С	-0.677902	0.108711	-0.604073	
С	-1.491798	-0.943434	-0.167752	
С	-2.811995	-0.676996	0.163384	
С	-3.359761	0.598250	0.085479	
С	-2.548053	1.638853	-0.350229	
С	-1.212728	1.401484	-0.692041	
Η	-1.129989	-1.963894	-0.107580	
Η	-4.398749	0.753209	0.347480	
Η	-2.958690	2.637214	-0.440388	
Η	-0.610226	2.215163	-1.084706	
С	0.780766	-0.135620	-0.926123	
Η	0.919801	-1.066287	-1.479688	
Η	1.171567	0.672076	-1.551973	
С	1.639975	-0.248387	0.359324	
Н	1.369714	-1.143340	0.919548	
С	3.139106	-0.229335	0.056169	
Ν	1.396250	0.950070	1.253834	
Н	1.459733	0.713298	2.246666	
Н	0.459998	1.343644	1.067974	
0	3.820812	0.738781	0.288490	
0	3.536023	-1.361459	-0.502382	
Н	4.483242	-1.313768	-0.719237	
F	-3.586421	-1.693406	0.570773	
Η	2.137296	1.643119	1.054409	

Isomer 2, 0.6kJ/mol			
0.667154	0.478064	-0.444546	
1.471619	-0.659365	-0.603360	
2.801449	-0.608903	-0.195910	
3.361216	0.528274	0.363663	
2.554969	1.655754	0.513041	
1.218157	1.634811	0.119015	
1.108645	-1.556946	-1.094145	
4.403460	0.527619	0.656671	
2.978198	2.560431	0.932565	
0.614762	2.529916	0.226217	
-0.794117	0.421784	-0.835953	
-1.116497	1.352052	-1.307551	
-0.966520	-0.381139	-1.558881	
-1.710772	0.207138	0.395486	
-1.670370	1.074886	1.053602	
-3.153648	-0.104663	-0.005758	
-1.246589	-0.997595	1.189035	
-0.237105	-1.151706	1.040850	
-1.415946	-0.890262	2.191895	
-3.612184	-1.216588	0.089169	
-3.768220	0.967229	-0.480132	
-4.670426	0.737824	-0.762862	
3.560268	-1.703271	-0.364277	
-1.797427	-1.812565	0.870524	

Isomer 4, 4.0kJ/mol			
0.454765	0.080523	0.782687	
1.549086	-0.762480	0.534565	

С	-2.207337	0.900949	0.044174	2.671322
С	-2.995653	-0.155743	0.482658	2.750435
С	-2.521991	-1.449965	0.301210	1.663903
С	-1.278577	-1.671789	-0.298493	0.522982
Η	-0.414712	1.576602	-0.898226	1.577353
Η	-3.958577	0.043761	0.935481	3.647322
Η	-3.130151	-2.291393	0.610465	1.712975
Н	-0.956265	-2.691007	-0.492154	-0.300296
С	0.875461	-0.840758	-1.327763	-0.789180
Н	0.913921	-1.835994	-1.777980	-0.533336
Н	1.104000	-0.126725	-2.120606	-1.264046
С	2.015852	-0.737996	-0.286290	-1.859978
Н	2.942703	-1.136933	-0.705470	-2.626991
С	2.326910	0.672287	0.236891	-2.584156
Ν	1.692635	-1.539536	0.958781	-1.251823
Н	0.666114	-1.643302	1.038903	-0.244358
Н	2.121614	-2.466225	0.963822	-1.361330
0	2.523569	1.532891	-0.749186	-3.089530
0	2.409696	0.906079	1.417596	-2.688042
Η	2.022722	-0.986155	1.771101	-1.711359
F	-2.657181	2.155167	0.196757	3.711235
Н	2.770537	2.401191	-0.386562	-3.588793

_

	Isomer 5, 13.8kJ/mol			
С	-0.685988	0.128041	-0.603208	
С	-1.496868	-0.933455	-0.183061	
С	-2.815012	-0.674911	0.162378	
С	-3.364058	0.601169	0.113375	
С	-2.555710	1.651195	-0.305995	
С	-1.222547	1.421862	-0.660757	
Н	-1.134084	-1.954790	-0.147670	
Н	-4.401548	0.750008	0.384722	
Н	-2.967753	2.650775	-0.373364	
Н	-0.623006	2.244252	-1.039498	
С	0.769036	-0.115102	-0.944489	
Η	0.901088	-1.038866	-1.511440	
Н	1.159957	0.698825	-1.562656	
С	1.634485	-0.258254	0.330680	

2.671322	-0.246771	-0.105827
2.750435	1.076928	-0.507770
1.663903	1.909948	-0.248709
0.522982	1.421010	0.386387
1.577353	-1.787792	0.890650
3.647322	1.440314	-0.993196
1.712975	2.952742	-0.537986
-0.300296	2.093300	0.598952
-0.789180	-0.487544	1.433514
-0.533336	-1.352541	2.050839
-1.264046	0.240663	2.092899
-1.859978	-0.927925	0.406049
-2.626991	-1.529178	0.900248
-2.584156	0.203068	-0.338753
-1.251823	-1.775685	-0.693688
-0.244358	-1.557101	-0.776171
-1.361330	-2.778824	-0.536343
-3.089530	1.098585	0.494682
-2.688042	0.206457	-1.540774
-1.711359	-1.498847	-1.580866
3.711235	-1.066947	-0.326021
-3.588793	1.768709	-0.003141

Isomer 6, 14.0kJ/mol			
0.676229	0.467288	-0.454180	
1.480570	-0.673313	-0.589230	
2.807482	-0.618256	-0.173781	
3.365294	0.526879	0.371406	
2.559554	1.657444	0.498155	
1.225461	1.632038	0.095243	
1.119896	-1.578517	-1.067410	
4.405626	0.529461	0.671158	
2.981022	2.568192	0.906107	
0.622568	2.529564	0.183379	
-0.782333	0.413651	-0.857647	
-1.099221	1.342965	-1.335117	
-0.956479	-0.391652	-1.577974	
-1.705161	0.219131	0.369362	

_

-1.596932	1.062447	1.051793
-3.173165	0.116697	-0.041151
-1.267691	-1.018773	1.140930
-1.606113	-1.012958	2.106554
-0.235581	-1.060636	1.145488
-3.793757	1.052900	-0.440207
-3.629447	-1.151769	0.069532
-4.551766	-1.198039	-0.235209
3.565565	-1.716917	-0.319308
-1.637219	-1.865562	0.694840

Isomer 8, 17.1kJ/mol			
0.460656	0.089938	0.799591	
1.526645	-0.775799	0.507736	
2.644012	-0.278315	-0.154391	
2.747235	1.049985	-0.535218	
1.689789	1.905430	-0.232429	
0.552618	1.435837	0.424405	
1.540334	-1.806971	0.847601	
3.640800	1.399117	-1.037027	
1.758822	2.952193	-0.502939	
-0.249178	2.122675	0.668058	
-0.778047	-0.453648	1.483639	
-0.525681	-1.316882	2.105523	
-1.228742	0.291815	2.140803	
-1.878367	-0.871311	0.484912	
-2.662306	-1.436546	0.996146	
-2.575126	0.322579	-0.183174	
-1.301410	-1.797108	-0.578483	
-0.352143	-1.468482	-0.825214	
-1.882151	-1.783350	-1.424457	
-2.903394	1.298521	0.417531	
-2.804308	0.088690	-1.494115	
-3.289938	0.835033	-1.884387	
3.656104	-1.121775	-0.417047	
-1.219762	-2.758745	-0.239066	

Н	1.303748	-1.121101	0.909255
С	3.111970	-0.444801	-0.009492
Ν	1.428357	0.961969	1.217980
Н	1.678928	0.779333	2.193037
Н	2.013500	1.739762	0.893626
Ο	3.537865	-1.450796	-0.486249
Ο	3.825525	0.672856	0.258488
Η	4.752828	0.542252	-0.003592
F	-3.586169	-1.699639	0.554057
Н	0.434403	1.241565	1.170716

	15011	101 /, 10. / KJ/	III0I
С	0.494095	-0.610240	0.717289
С	0.992194	0.691217	0.578680
С	2.218401	0.876751	-0.043861
С	2.974991	-0.177634	-0.540006
С	2.480468	-1.468699	-0.394057
С	1.248316	-1.688300	0.228590
Н	0.460425	1.551432	0.967237
Н	3.930723	0.020144	-1.008602
Н	3.064352	-2.309629	-0.748256
Н	0.911231	-2.707933	0.392897
С	-0.860192	-0.855564	1.352185
Н	-0.903486	-1.860821	1.779738
Н	-1.055785	-0.153969	2.164795
С	-2.023919	-0.695639	0.350347
Н	-2.953523	-1.077265	0.780808
С	-2.295456	0.766172	-0.032929
Ν	-1.753813	-1.520476	-0.901495
Н	-0.740686	-1.480289	-1.110450
Н	-2.270120	-1.141228	-1.703283
0	-2.306620	1.651358	0.765483
0	-2.563805	0.889002	-1.351304
Н	-2.777254	1.813900	-1.561992
F	2.689698	2.126727	-0.164877
Н	-2.006472	-2.502808	-0.769391

	Isomer 9, 20.4kJ/mol			
С	0.505105	-0.704620	-0.448320	
С	1.228690	0.431498	-0.816932	
С	2.519325	0.589405	-0.331851	
С	3.118868	-0.340995	0.502748	
С	2.391411	-1.474744	0.857534	
С	1.093597	-1.660148	0.385838	
Н	0.819562	1.185365	-1.479921	
Н	4.130862	-0.178625	0.851365	
Н	2.844996	-2.221482	1.497770	
Н	0.552703	-2.561118	0.657078	
С	-0.906457	-0.899074	-0.960604	
Н	-1.033216	-1.935938	-1.293773	
Н	-1.086435	-0.250911	-1.824248	
С	-1.997058	-0.623446	0.104088	
Н	-1.873185	-1.272975	0.969945	
С	-2.076500	0.849533	0.526759	
Ν	-3.366188	-0.896260	-0.508893	
Н	-3.322325	-1.595050	-1.254966	
Η	-4.050426	-1.208038	0.185766	
0	-1.204177	1.152545	1.466849	
0	-2.870564	1.598356	0.006585	
Н	-3.699529	0.010624	-0.887005	
F	3.207487	1.687546	-0.692978	
Η	-1.251040	2.102383	1.674004	

3-F-Phe·H⁺: The comparison between experimental IRMPD and calculated IR spectra

4-F-Phe•H⁺

Table S3 The Gibbs' Energies and Relative energies of 4-F-Phe \cdot H ⁺			
4-F-Phe Isomer	Gibbs (hartree)	Relative energy (kJ/mol)	
Isomer 1	-654.4356	0.00	
Isomer 2	-654.4342	3.64	
Isomer 3	-654.4304	13.52	
Isomer 4	-654.4293	16.64	
Isomer 5	-654.4281	19.54	
Isomer 6	-654.4221	35.47	
Isomer 7	-654.4213	37.45	
Isomer 8	-654.4210	38.43	
Isomer 9	-654.4123	61.13	
Isomer 10	-654.3993	95.32	
Isomer 11	-654.3905	118.31	
Isomer 12	-654.3900	119.82	
Isomer 13	-654.3869	127.74	
Isomer 14	-654.3858	130.73	
Isomer 15	-654.3838	135.91	
Isomer 16	-654.3829	138.21	

4-F-Phe·H⁺: The *XYZ* atomic coordinates and structures

	C	GM, 0.0kJ/mc	ol
С	1.268331	1.293017	0.166314
С	0.578257	0.285685	-0.524072
С	1.275546	-0.869298	-0.906978
С	2.628276	-1.026370	-0.603877
С	3.272255	-0.011209	0.086597
С	2.616531	1.152508	0.473466
Н	0.759020	2.209435	0.447068
Н	0.777513	-1.638536	-1.490311
Н	3.181118	-1.905407	-0.910238
Н	3.164697	1.928908	0.992272
С	-0.897607	0.424014	-0.829100
С	-1.777378	0.166650	0.422136
С	-3.259198	0.033663	0.069669
Ν	-1.396201	-1.153930	1.058989
0	-3.816610	-1.036547	0.065080
0	-3.789879	1.203601	-0.249101
Н	-0.411073	-1.372915	0.845376
Η	-2.029545	-1.878052	0.680665
Н	-4.721062	1.089314	-0.506658
Н	-1.188694	-0.271967	-1.621621
Н	-1.143299	1.427810	-1.181799
Н	-1.623418	0.950618	1.163360
Η	-1.516518	-1.145776	2.074530
F	4.571834	-0.149368	0.382408

Isomer 2, 3.6kJ/mol			
0.710125	-0.948709	-0.655330	
0.366502	0.404929	-0.785263	
1.313615	1.375849	-0.424173	
2.566520	1.013377	0.069804	
2.861188	-0.335878	0.194219	
1.955850	-1.326517	-0.167347	
0.011827	-1.719266	-0.963207	
1.098469	2.429930	-0.577401	
3.310474	1.754493	0.333395	
2.237162	-2.368052	-0.075439	
-0.999584	0.825177	-1.285021	
-2.085256	0.808500	-0.180320	
-2.545900	-0.577526	0.292491	
-1.591122	1.492158	1.078576	
-2.584109	-0.869131	1.462743	
-2.916597	-1.346495	-0.719333	
-1.891224	2.465376	1.153586	
-1.944612	0.943347	1.883840	
-3.256631	-2.193715	-0.383501	
-1.354160	0.174250	-2.086043	
-0.954595	1.835577	-1.699619	
-2.975294	1.343518	-0.520263	
-0.558041	1.455330	1.097827	
4.062418	-0.697343	0.665017	

Isomer 4, 16.6kJ/mol				
0.737970	-0.927370	-0.723954		
0.368962	0.425124	-0.788631		
1.284261	1.393181	-0.345853		

С	2.636605	-1.056444	-0.555411	2.528889	1.029570	0.167297
С	3.276689	-0.015181	0.099339	2.848850	-0.318573	0.226591
С	2.618839	1.162225	0.437562	1.977096	-1.305100	-0.217999
Н	0.761993	2.217829	0.356694	0.064528	-1.691671	-1.094717
Н	0.791367	-1.703145	-1.427824	1.053249	2.450034	-0.450312
Н	3.191447	-1.946407	-0.824306	3.248780	1.769718	0.493102
Η	3.163689	1.958385	0.929179	2.278985	-2.344224	-0.177704
С	-0.886720	0.391632	-0.862440	-0.988746	0.843508	-1.316448
С	-1.772524	0.195017	0.392300	-2.101327	0.769849	-0.248420
С	-3.259127	0.259081	0.049681	-2.520905	-0.666354	0.094814
Ν	-1.421082	-1.131989	1.050128	-1.659281	1.495312	1.015447
0	-3.807305	1.276879	-0.241225	-2.671609	-1.512171	-0.731797
0	-3.825668	-0.969220	0.078747	-2.740438	-0.811705	1.420326
Η	-1.883035	-1.905760	0.559932	-0.654845	1.302419	1.168257
Η	-1.717763	-1.171938	2.028527	-1.774046	2.508210	0.930117
Η	-4.760010	-0.906979	-0.183439	-3.053587	-1.712755	1.608102
Н	-1.179269	-0.330561	-1.631013	-1.313032	0.204421	-2.139611
Н	-1.125493	1.383258	-1.252752	-0.948751	1.864836	-1.705059
Н	-1.555078	0.970805	1.126745	-3.004139	1.277261	-0.599082
Н	-0.397614	-1.260664	1.001449	-2.185374	1.160265	1.830274
F	4.574359	-0.142289	0.407944	4.043252	-0.680855	0.715099

	Isomer 5, 19.5kJ/mol				
С	-1.005030	0.369551	1.203056		
С	-0.408095	-0.653887	0.460956		
С	-1.151906	-1.293702	-0.537169		
С	-2.461369	-0.911493	-0.805824		
С	-3.018559	0.115970	-0.056096		
С	-2.316153	0.762500	0.950137		
Н	-0.453324	0.861175	1.997710		
Н	-0.720067	-2.111132	-1.106617		
Н	-3.051671	-1.400554	-1.570182		
Н	-2.794997	1.546671	1.522658		
С	1.016656	-1.075545	0.745099		
С	2.035747	-0.601858	-0.322135		
С	2.215988	0.920782	-0.356965		
Ν	3.420016	-1.120777	0.051453		
0	3.116347	1.450153	0.252403		

Ο	1.299896	1.520872	-1.090347
Η	3.867813	-0.372018	0.612744
Η	3.372204	-1.987286	0.593535
Η	1.419378	2.485924	-1.051458
Η	1.077070	-2.170060	0.784133
Н	1.331911	-0.695084	1.722162
Η	1.779936	-0.988137	-1.308194
Η	4.011395	-1.284465	-0.767898
F	-4.283708	0.488700	-0.307953

4-F-Phe·H⁺: The comparison between experimental IRMPD and calculated IR spectra

2,5-F₂-Ph<u>e•H</u>⁺

Table S4 The Gibbs' Energies and Relative energies of $2,5$ -F ₂ -Phe·H ⁺				
2,5F ₂ -Phe Isomer	Gibbs (hartree)	Relative energy (kJ/mol)		
Isomer 1	-753.7125	0.00		
Isomer 2	-753.7121	0.96		
Isomer 3	-753.7080	11.66		
Isomer 4	-753.7077	12.47		
Isomer 5	-753.7048	20.09		
Isomer 6	-753.7030	24.88		
Isomer 7	-753.7022	26.98		
Isomer 8	-753.6982	37.36		
Isomer 9	-753.6977	38.77		
Isomer 10	-753.6973	39.74		
Isomer 11	-753.6849	72.36		
Isomer 12	-753.6734	102.62		
Isomer 13	-753.6724	105.16		
Isomer 14	-753.6704	110.42		
Isomer 15	-753.6701	111.16		
Isomer 16	-753.6638	127.69		
Isomer 17	-753.6615	133.81		
Isomer 18	-753.6612	134.69		
Isomer 19	-753.6597	138.49		
Isomer 20	-753.6593	139.56		
Isomer 21	-753.6587	141.26		

20

2,5-F₂-Phe·H⁺: The *XYZ* atomic coordinates and structures

	GM, 0.0KJ/mol			
С	-2.556510	1.457101	-0.021589	
С	-1.229358	1.189150	-0.293654	
С	-0.688670	-0.089967	-0.375600	
С	-1.563513	-1.158659	-0.152329	
С	-2.898326	-0.904723	0.131307	
С	-3.414394	0.382508	0.197221	
Н	-4.464491	0.534254	0.411053	
С	0.764328	-0.326658	-0.734413	
Н	1.068967	0.316417	-1.566553	
Н	0.882943	-1.355654	-1.075986	
С	1.754368	-0.141179	0.436973	
Н	1.420950	-0.711732	1.304832	
Ν	1.881308	1.315858	0.851259	
Η	2.824470	1.623841	0.547023	
Η	1.157132	1.903330	0.409743	
F	-0.371628	2.260365	-0.492933	
F	-3.717367	-1.946172	0.339155	
Н	-2.909177	2.479928	0.013131	
Н	-1.223018	-2.185311	-0.217100	
0	4.085523	0.233791	0.001601	
С	3.182881	-0.564448	0.065332	
0	3.261105	-1.863172	-0.172704	
Н	4.171529	-2.104947	-0.415973	
Н	1.824638	1.437427	1.864369	

Isomer 2, 1.0kJ/mol			
-2.101130	1.486706	-0.592284	
-0.885653	1.393900	0.055795	
-0.417173	0.245785	0.686558	
-1.250059	-0.877823	0.643001	
-2.471400	-0.802590	-0.012038	
-2.916275	0.358481	-0.628944	
-3.880170	0.375385	-1.120937	
0.898920	0.220272	1.439385	
0.911979	-0.641128	2.108508	
0.995952	1.105087	2.075607	
2.174241	0.109530	0.575458	
3.037653	-0.009974	1.233252	
2.421567	1.345267	-0.275661	
3.260045	1.853158	0.010676	
1.618288	1.992859	-0.243048	
-0.070776	2.516472	0.080756	
-3.250222	-1.894840	-0.039140	
-2.402886	2.419068	-1.051933	
-0.966461	-1.802625	1.130313	
2.339110	-0.885241	-1.603496	
2.170931	-1.057881	-0.421532	
1.985589	-2.218696	0.185604	
2.006803	-2.940938	-0.465774	
2.544814	1.010762	-1.250841	

Isomer 4, 12.5kJ/mol -2.568700 1.460846 0.090558 -1.246479 1.206807 -0.214094

-0.064468

-0.376562

-0.706714

С	-1.719689	-0.882262	-0.541714	-1.581761	-1.142449	-0.203111
С	-2.839850	-0.309394	0.047630	-2.912990	-0.904476	0.110299
С	-2.840630	0.995652	0.518936	-3.426457	0.376809	0.257004
Н	-3.737590	1.409393	0.961872	-4.473154	0.517302	0.493792
С	0.693500	-0.725240	-1.312932	0.740330	-0.300536	-0.762496
Н	1.155906	-0.021680	-2.007551	1.014782	0.295498	-1.640377
Н	0.405694	-1.603439	-1.894335	0.857810	-1.345860	-1.049804
С	1.794938	-1.151226	-0.306941	1.768894	-0.055206	0.364249
Н	2.470395	-1.861739	-0.787241	1.367462	-0.410851	1.315220
Ν	1.201483	-1.827782	0.913946	2.051383	1.432298	0.544187
Н	1.350273	-2.837949	0.931645	2.478009	1.630749	1.452640
Н	1.657256	-1.385331	1.738134	2.714679	1.754794	-0.167631
F	0.574988	1.911267	-0.294683	-0.391696	2.293126	-0.361778
F	-3.956688	-1.046594	0.150766	-3.730336	-1.955471	0.269128
Н	-1.633022	2.776124	0.744112	-2.918041	2.480460	0.190703
Н	-1.792471	-1.887438	-0.942878	-1.241541	-2.163904	-0.324849
0	2.751339	0.163123	1.456826	3.108437	-2.000995	-0.026202
С	2.659731	-0.016922	0.266047	3.075708	-0.816681	0.106776
0	3.286755	0.645434	-0.686291	4.136650	0.017212	0.050306
Н	3.822666	1.359894	-0.301588	4.947000	-0.494340	-0.115794
Н	0.190162	-1.634775	0.966947	1.179912	1.977556	0.442079

	Isomer 5, 20.1kJ/mol				
С	2.486652	1.463671	0.415525		
С	1.165468	1.298207	0.036205		
С	0.658731	0.094212	-0.457490		
С	1.544995	-0.987550	-0.554052		
С	2.869925	-0.824461	-0.170183		
С	3.358079	0.382189	0.310944		
Н	4.400352	0.469980	0.589989		
С	-0.785808	-0.025460	-0.890433		
Н	-0.945751	-0.985322	-1.389721		
Н	-1.050126	0.755150	-1.607664		
С	-1.776498	0.127005	0.285098		
Н	-1.686190	1.125147	0.714552		
Ν	-1.413885	-0.854980	1.393310		
Н	-0.390940	-0.869475	1.508964		

Н	-1.845665	-0.602015	2.286143
F	0.311426	2.349315	0.141161
F	3.701092	-1.873089	-0.276749
Η	2.824189	2.426949	0.776698
Η	1.227275	-1.940523	-0.962060
Ο	-3.766420	0.668098	-0.922809
С	-3.220896	-0.076684	-0.169653
Ο	-3.752590	-1.201597	0.362433
Η	-4.661340	-1.320469	0.037040
Н	-1.739079	-1.799377	1.160430

2,5-F₂-Phe·H⁺: The comparison between experimental IRMPD and calculated IR spectra

3,5-F₂-Ph<u>e•H</u>⁺

Table S5 The Gibbs' Energies and Relative energies of 3,5-F ₂ -Phe·H ⁺				
3,5F ₂ -Phe Isomer	Gibbs (hartree)	Relative energy (kJ/mol)		
Isomer 1	-753.7084	0.00		
Isomer 2	-753.7072	3.30		
Isomer 3	-753.7032	13.61		
Isomer 4	-753.7023	16.18		
Isomer 5	-753.7015	18.16		
Isomer 6	-753.6952	34.73		
Isomer 7	-753.6946	36.23		
Isomer 8	-753.6934	39.49		
Isomer 9	-753.6933	39.69		

3,5-F₂-Phe·H⁺: The *XYZ* atomic coordinates and structures

	(JM, 0.0 kJ/m)I
С	0.442806	0.131170	-0.564933
С	1.110927	-1.100771	-0.567738
С	2.455301	-1.138344	-0.202047
С	3.159645	-0.006390	0.170936
С	2.465424	1.196760	0.161867
С	1.125493	1.292914	-0.191461
Н	0.637493	-2.012445	-0.915916
Н	4.206182	-0.053145	0.441988
Η	0.651536	2.267356	-0.198376
С	-1.029694	0.184865	-0.912410
Н	-1.264916	1.066496	-1.511614
Н	-1.313458	-0.690453	-1.503928
С	-1.918146	0.257727	0.354923
Н	-1.752302	1.197366	0.881671
С	-3.402435	0.073191	0.029118
Ν	-1.574517	-0.872876	1.304162
Н	-2.240782	-1.643348	1.123506
Н	-0.601703	-1.182190	1.155210
Ο	-3.986820	-0.947678	0.296681
Ο	-3.898977	1.133259	-0.587119
Н	-4.832668	0.982254	-0.815580
F	3.087683	-2.318488	-0.220658
Н	-1.682693	-0.602007	2.284570
F	3.117360	2.312808	0.507693

Isomer 2, 3.3kJ/mol				
0.281371	-0.278307	0.819315		
1.253585	-1.234190	0.488993		
2.446259	-0.811243	-0.093831		
2.713791	0.519808	-0.365206		
1.732211	1.439159	-0.020257		
0.523891	1.073725	0.560531		
1.142638	-2.281969	0.747868		
3.650224	0.831443	-0.808849		
-0.186322	1.845831	0.828478		
-1.038893	-0.730778	1.407386		
-0.909767	-1.673430	1.945220		
-1.424253	-0.007161	2.127328		
-2.139139	-0.929827	0.338091		
-2.997157	-1.442602	0.779555		
-2.670830	0.348131	-0.329284		
-1.643091	-1.779226	-0.815595		
-0.613234	-1.710814	-0.876760		
-2.041089	-1.373542	-1.683234		
-2.754303	0.447436	-1.528550		
-3.044030	1.251940	0.562217		
-3.427007	2.024440	0.111409		
3.370945	-1.732835	-0.392928		
-1.904884	-2.763084	-0.733064		
1.960798	2.736344	-0.255133		

	Ison	ner 3, 13.6kJ	/mol
С	0.451478	0.125127	-0.568645
С	1.119201	-1.107092	-0.559216
С	2.460916	-1.143440	-0.184633

Isomer 4, 16.2kJ/mol				
0.286127	-0.276682	0.829140		
1.230616	-1.247843	0.462879		
2.419331	-0.842060	-0.138878		

С	3.163758	-0.009787	0.185932	2.709961	0.486999	-0.395597
С	2.470443	1.193786	0.165480	1.755513	1.421517	-0.016315
С	1.132947	1.288645	-0.197464	0.551582	1.074656	0.585131
Н	0.647803	-2.020867	-0.904451	1.103321	-2.297001	0.708172
Н	4.208504	-0.055637	0.463987	3.643767	0.785551	-0.853559
Н	0.659485	2.263269	-0.214378	-0.139362	1.855699	0.876289
С	-1.018012	0.183867	-0.929670	-1.028108	-0.708831	1.448784
Н	-1.247968	1.072302	-1.521040	-0.904652	-1.653797	1.984388
Н	-1.302225	-0.684046	-1.532371	-1.385780	0.024499	2.173272
С	-1.912699	0.256604	0.330220	-2.155146	-0.874102	0.407584
Н	-1.680495	1.157374	0.899088	-3.021429	-1.362199	0.862105
С	-3.396324	0.289758	-0.037125	-2.660272	0.463181	-0.154237
Ν	-1.603975	-0.922141	1.244331	-1.698256	-1.777990	-0.730806
Н	-1.901043	-0.751010	2.208629	-0.704406	-1.580352	-0.937644
Н	-2.096414	-1.762190	0.920784	-2.249766	-1.597736	-1.577637
0	-3.905433	1.234831	-0.554680	-2.851179	1.419490	0.531242
0	-4.005169	-0.879640	0.262575	-2.899040	0.380671	-1.480855
Н	-4.937215	-0.847187	-0.013398	-3.263179	1.221346	-1.806862
F	3.092198	-2.324787	-0.191403	3.317253	-1.779261	-0.472358
Н	-0.586716	-1.099955	1.232632	-1.773895	-2.767668	-0.482505
F	3.120989	2.311076	0.508933	2.008002	2.716514	-0.239244

	Isomer 5, 18.2kJ/mol				
С	0.301145	-0.299655	-0.705094		
С	1.037881	-1.351845	-0.154249		
С	2.327294	-1.100558	0.293004		
С	2.919954	0.151007	0.211144		
С	2.161953	1.166970	-0.348487		
С	0.865618	0.972298	-0.809763		
Н	0.646778	-2.359967	-0.081551		
Н	3.929923	0.322880	0.558919		
Н	0.332445	1.805871	-1.250595		
С	-1.109897	-0.543188	-1.198421		
Н	-1.429755	0.283663	-1.839977		
Н	-1.130046	-1.457319	-1.803371		
С	-2.143597	-0.721132	-0.059028		
Н	-1.872190	-1.551741	0.591729		

С	-2.379258	0.559867	0.753618
Ν	-3.508386	-1.017014	-0.669499
Η	-3.987365	-0.101429	-0.765778
Η	-3.434143	-1.474420	-1.581781
0	-3.306387	1.291397	0.496043
0	-1.475597	0.730670	1.697345
Η	-1.629963	1.572065	2.161821
F	3.031823	-2.113522	0.820216
Η	-4.088412	-1.602488	-0.062034
F	2.700482	2.391618	-0.451808

3,5-F₂-Phe·H⁺: The comparison between experimental IRMPD and calculated IR spectra

F₅-Phe•H_____

Table S6 The Gibbs' Energies and Relative energies of F5-Phe·H ⁺					
F ₅ -Phe Isomer	Gibbs (hartree)	Relative energy (kJ/mol)			
Isomer 1	-1051.5014	0.00			
Isomer 2	-1051.5008	1.52			
Isomer 3	-1051.4970	11.40			
Isomer 4	-1051.4955	15.45			
Isomer 5	-1051.4942	18.91			
Isomer 6	-1051.4916	25.72			
Isomer 7	-1051.4876	36.22			
Isomer 8	-1051.4875	36.39			
Isomer 9	-1051.4741	71.61			
Isomer 10	-1051.4606	107.00			
Isomer 11	-1051.4584	112.68			
Isomer 12	-1051.4549	122.02			
Isomer 13	-1051.4546	122.88			
Isomer 14	-1051.4538	124.99			
Isomer 15	-1051.4535	125.72			
Isomer 16	-1051.4533	126.28			
Isomer 17	-1051.4527	127.74			

0.121049

-1.141865

-1.310976

-0.193114

1.085393

1.209657

0.299382

1.099366

-0.611563

0.596234

-0.741027

-0.538126

-0.043865

0.265945

0.080795

-0.414486

-1.366036

-2.110210

-1.899248

-0.391103

-0.091575

0.465615

1.754949

2.525633

2.001185

0.713367

-1.460133

-1.426555

-1.735086

-2.622586

	(GM, 0.0kJ/mo	1
С	0.114314	0.143849	-0.378838
С	0.883675	1.282326	-0.136403
С	2.252094	1.211321	0.104018
С	2.885594	-0.029379	0.111712
С	2.146783	-1.189531	-0.116840
С	0.786272	-1.074887	-0.353051
С	-1.356563	0.247040	-0.719133
Н	-1.569319	1.259375	-1.063370
Н	-1.601881	-0.426820	-1.545643
С	-2.312634	-0.021644	0.462466
Н	-2.038501	0.594884	1.319600
С	-3.782756	0.245121	0.097681
Ν	-2.290165	-1.478503	0.902451
Н	-3.227289	-1.862074	0.664830
Н	-2.153599	-1.580031	1.910439
0	-4.601627	-0.641340	0.092463
0	-3.988528	1.515315	-0.197377
Н	-4.922360	1.662781	-0.428202
F	2.952541	2.313964	0.325334
F	0.296097	2.484814	-0.145835
F	0.067052	-2.217383	-0.558784
F	2.736468	-2.377767	-0.098542
F	4.183895	-0.109835	0.346031
Н	-1.559821	-2.019835	0.421008

-3.541248	0.714339	-0.967366
-2.829777	-0.492380	0.672233
-2.403306	1.873912	0.404972
-3.225172	2.481871	0.391995
-2.240992	1.576930	1.387633
-2.621903	-0.278556	1.841874
-3.239540	-1.623590	0.130986
-3.337935	-2.311714	0.811805
2.250235	-2.527238	0.133511
-0.250391	-2.233150	-0.837711
0.205093	2.466164	-0.581191
2.720923	2.158215	0.381493
3.749000	-0.341746	0.742959
-1.592133	2.410065	0.070195

	Isomer 3, 11.4kJ/mol				
С	0.014312	0.214514	-0.642429		
С	-0.596236	-1.036952	-0.639601		
С	-1.915862	-1.208693	-0.240840		
С	-2.653894	-0.102617	0.174499		
С	-2.069324	1.162829	0.189493		

Isomer 4, 15.4kJ/mol				
0.120166	0.188809	-0.399047		
0.918711	1.296276	-0.110879		
2.280938	1.176507	0.143391		
2.876624	-0.083130	0.117447		
2.107388	-1.213032	-0.156820		

С	-0.750555	1.298685	-0.217883	0.752196	-1.053386	-0.405378
С	1.430907	0.411466	-1.119366	-1.339851	0.334378	-0.763894
Н	1.751440	-0.460546	-1.694046	-1.529563	1.337557	-1.146384
Н	1.453846	1.281100	-1.784463	-1.594713	-0.359654	-1.569824
С	2.438065	0.678236	0.028668	-2.312483	0.133756	0.408673
Н	2.082576	1.485841	0.667981	-2.104316	0.850409	1.208113
С	2.770223	-0.571548	0.857995	-3.773513	0.348596	-0.015783
Ν	3.781376	1.094345	-0.555007	-2.148123	-1.246147	1.042047
Н	4.222748	1.843010	-0.014389	-2.976303	-1.478348	1.602534
Н	3.707763	1.405077	-1.527146	-1.315098	-1.279283	1.636691
0	3.831524	-1.134955	0.733894	-4.106514	1.209087	-0.768632
0	1.781205	-0.918347	1.658570	-4.592198	-0.530294	0.602654
Н	2.011734	-1.731535	2.141985	-5.517064	-0.353727	0.358495
F	-2.470622	-2.414861	-0.247163	3.011742	2.248963	0.410139
F	0.108011	-2.112849	-1.024903	0.364586	2.513769	-0.087498
F	-0.181040	2.520281	-0.200363	0.003703	-2.160110	-0.659823
F	-2.768556	2.218057	0.589113	2.663693	-2.417762	-0.170971
F	-3.910217	-0.253790	0.561539	4.168892	-0.209783	0.364973
Н	4.394415	0.256000	-0.491826	-2.030980	-1.972612	0.326238

	Isomer 5, 18.9kJ/mol					
С	-0.073954	0.152463	-0.726360			
С	0.432062	-1.132821	-0.527754			
С	1.718628	-1.352046	-0.045571			
С	2.535734	-0.264726	0.255934			
С	2.061656	1.033990	0.075532			
С	0.774729	1.211483	-0.408124			
С	-1.432881	0.394907	-1.347838			
Н	-1.366665	1.221448	-2.059699			
Н	-1.743880	-0.484747	-1.913611			
С	-2.585142	0.696489	-0.363246			
Н	-3.457382	1.017147	-0.934822			
С	-3.003447	-0.533948	0.450983			
Ν	-2.226570	1.851066	0.569704			
Н	-1.660553	1.501988	1.351787			
Н	-1.683758	2.572858	0.080411			
0	-3.534021	-1.474697	-0.050015			

0	-2.678605	-0.398827	1.755774
Н	-2.938621	-1.198372	2.245081
F	2.168013	-2.586181	0.129599
F	-0.331107	-2.191016	-0.819134
F	0.316221	2.483143	-0.575830
F	2.827834	2.076682	0.369349
F	3.756401	-0.461995	0.722638
Н	-3.062704	2.279976	0.975928

F₅-Phe·H⁺: The comparison between experimental IRMPD and calculated IR spectra

3-CN-Phe•H⁺

Table S7 The Gibbs' Energies and Relative energies of 3-CN-Phe \cdot H ⁺					
3CN-Phe Isomer	Gibbs (hartree)	Relative energy (kJ/mol)			
Isomer 1	-647.4213	0.00			
Isomer 2	-647.4197	4.15			
Isomer 3	-647.4164	12.86			
Isomer 4	-647.4160	13.93			
Isomer 5	-647.4152	15.96			
Isomer 6	-647.4075	36.28			
Isomer 7	-647.4071	37.42			
Isomer 8	-647.4066	38.65			
Isomer 9	-647.4057	41.07			

3-CN-Phe·H⁺: The *XYZ* atomic coordinates and structures

	Isomer 1, 0.0kJ/mol					
С	0.828636	1.880264	0.061430			
С	2.148073	2.081550	0.455901			
С	3.076220	1.045703	0.374338			
С	2.678237	-0.201323	-0.119576			
С	1.348389	-0.401094	-0.528079			
С	0.415948	0.635044	-0.433974			
Н	0.123999	2.703978	0.115752			
Н	2.459739	3.052386	0.821573			
Н	4.103605	1.200084	0.679110			
Н	1.073103	-1.357395	-0.962360			
С	-1.024094	0.394948	-0.836358			
Н	-1.436195	1.256396	-1.365759			
Н	-1.092930	-0.459773	-1.516080			
С	-1.941076	0.148471	0.387645			
С	-3.344359	-0.301700	-0.026862			
С	3.612688	-1.281079	-0.216765			
Ν	4.349130	-2.167434	-0.286756			
0	-4.038556	0.695625	-0.550253			
Η	-4.912669	0.380760	-0.839442			
0	-3.705569	-1.445244	0.102194			
Η	-1.990084	1.039621	1.013430			
Ν	-1.395452	-0.983272	1.235960			
Η	-1.612077	-0.862633	2.228528			
Η	-0.372935	-1.050860	1.131303			
Η	-1.858270	-1.855370	0.927775			

Isomer 2, 4.1kJ/mol				
-0.184179	-0.872393	-0.695920		
-0.907969	0.316886	-0.577798		
-2.190326	0.312685	-0.014769		
-2.761265	-0.888189	0.431695		
-2.049360	-2.074347	0.303605		
-0.770235	-2.069106	-0.256180		
-0.498157	1.251122	-0.943290		
-3.756064	-0.883672	0.858915		
-2.495878	-3.008016	0.623316		
-0.249876	-3.012541	-0.397896		
-2.912009	1.544164	0.097459		
-3.478611	2.545601	0.190429		
1.218390	-0.873672	-1.270095		
1.466453	-1.866575	-1.654086		
1.306890	-0.182345	-2.110061		
2.301256	-0.468919	-0.242888		
3.294253	-0.686716	-0.643732		
2.306513	1.004149	0.196168		
2.153234	-1.244794	1.051840		
1.172652	-1.546081	1.163973		
2.759691	-2.065188	1.101523		
2.341265	1.314754	1.361383		
2.312319	1.828316	-0.838365		
2.371742	2.749560	-0.530378		
2.372378	-0.587299	1.824026		

С	3.082523	1.039007	0.384759	-3.107519	1.035960	0.074242
С	2.682451	-0.207464	-0.109250	-2.671220	-0.295213	-0.008546
С	1.354797	-0.402173	-0.526566	-1.343128	-0.579795	-0.349303
С	0.425512	0.637459	-0.440674	-0.441516	0.458147	-0.603066
Н	0.138502	2.708427	0.103161	-0.213283	2.600548	-0.755933
Н	2.471011	3.048976	0.824158	-2.551872	3.096339	-0.140450
Н	4.108512	1.189679	0.696047	-4.138195	1.247578	0.329510
Н	1.079064	-1.358341	-0.960748	-1.034685	-1.616172	-0.436581
С	-1.013713	0.407989	-0.853404	1.001691	0.149995	-0.949655
Н	-1.423678	1.280237	-1.366696	1.072163	-0.634407	-1.706609
Н	-1.086649	-0.433499	-1.549572	1.492353	1.035496	-1.365259
С	-1.932832	0.152087	0.363813	1.799047	-0.357766	0.273169
С	-3.380920	-0.083775	-0.066525	3.263207	-0.620564	-0.079042
С	3.611307	-1.292897	-0.196687	-3.578374	-1.371295	0.254276
Ν	4.340870	-2.185565	-0.258446	-4.298706	-2.245357	0.477138
0	-3.737694	-1.377769	0.091869	4.077980	0.302085	0.480717
Η	-4.648723	-1.510561	-0.221907	4.998437	0.133597	0.215347
0	-4.063709	0.785020	-0.513007	3.598561	-1.516624	-0.789258
Η	-1.911304	1.011471	1.034966	1.365283	-1.286995	0.644286
Ν	-1.405163	-1.031211	1.165018	1.686050	0.650092	1.410293
Η	-0.377472	-0.968833	1.223786	2.315938	1.443570	1.249249
Н	-1.790718	-1.058289	2.112837	1.941504	0.242372	2.313805
Н	-1.662503	-1.914391	0.710542	0.715543	0.993017	1.460282

	Isomer 5, 16.0kJ/mol					
С	0.169805	1.621606	0.352907			
С	1.272710	2.159183	-0.305988			
С	2.415499	1.392712	-0.519157			
С	2.458828	0.074559	-0.051145			
С	1.351806	-0.463492	0.625704			
С	0.196469	0.299635	0.821837			
Н	-0.705868	2.237269	0.523629			
Н	1.245699	3.186467	-0.648674			
Н	3.273783	1.810089	-1.030445			
Н	1.433983	-1.463398	1.041935			
С	-1.001605	-0.311792	1.521925			
Η	-0.679398	-1.082449	2.227749			

Η	-1.546916	0.437313	2.098479
С	-2.024835	-0.933960	0.549422
С	-2.799961	0.109428	-0.268660
С	3.621172	-0.736809	-0.249002
Ν	4.540805	-1.415076	-0.414231
0	-2.988400	-0.306040	-1.539793
Н	-3.526218	0.341828	-2.026182
0	-3.209850	1.125397	0.201362
Н	-2.773147	-1.506620	1.104190
Ν	-1.339903	-1.921142	-0.387713
Н	-0.433377	-1.528974	-0.688319
Н	-1.154625	-2.815141	0.074773
Н	-1.913545	-2.084134	-1.223129

3-CN-Phe·H⁺: The comparison between experimental IRMPD and calculated IR spectra

3-CF₃-Ph<u>e•H</u>⁺

Table S8 The Gibbs' Energies and Relative energies of $3-CF_3-Phe \cdot H^+$					
3CF ₃ -Phe Isomer	Gibbs (hartree)	Relative energy (kJ/mol)			
Isomer 1	-892.3060	0.00			
Isomer 2	-892.3055	1.24			
Isomer 3	-892.3051	2.32			
Isomer 4	-892.3041	4.98			
Isomer 5	-892.3010	13.15			
Isomer 6	-892.3004	14.78			
Isomer 7	-892.3003	14.96			
Isomer 8	-892.2991	18.20			
Isomer 9	-892.2990	18.37			
Isomer 10	-892.2929	34.30			
Isomer 11	-892.2921	36.54			
Isomer 12	-892.2915	37.96			
Isomer 13	-892.2915	38.12			
Isomer 14	-892.2907	40.16			
Isomer 15	-892.2901	41.63			
Isomer 16	-892.2822	62.51			

3-CF₃-Phe·H⁺: The *XYZ* atomic coordinates and structures

	(GM, 0.0kJ/mo	ol
С	0.033473	2.178054	-0.045484
С	0.307606	0.888658	0.433958
С	-0.730804	-0.044140	0.499879
С	-2.282541	1.579049	-0.400712
С	-1.251504	2.519865	-0.450505
Η	0.820829	2.924431	-0.077921
Η	-0.559892	-1.027567	0.928395
Η	-1.457935	3.523615	-0.801593
С	1.710111	0.488287	0.838763
С	2.590012	0.136219	-0.387681
С	3.928833	-0.480692	0.023369
Ν	1.910208	-0.917488	-1.239182
0	4.150470	-1.659012	-0.108511
0	4.738971	0.424413	0.548684
Н	1.681661	-0.368018	1.519378
Н	2.219408	1.297769	1.365399
Н	2.744869	1.017509	-1.010170
С	-3.096002	-0.758904	0.114416
Н	-3.283024	1.845550	-0.716115
С	-2.018861	0.300344	0.076037
F	-3.096436	-1.419187	1.290115
F	-2.877795	-1.687190	-0.854719
F	-4.320324	-0.253487	-0.080198
Н	0.886506	-0.858530	-1.134099
Н	2.261143	-1.840985	-0.934152
Н	2.140055	-0.821071	-2.231322
Η	5.568456	0.004831	0.836074

Isomer 2, 1.2kJ/mol				
0.004228	2.084672	-0.515758		
0.291411	0.719117	-0.645565		
-0.736231	-0.211345	-0.456881		
-2.301925	1.580277	-0.005610		
-1.286934	2.511236	-0.201282		
0.778480	2.822853	-0.703873		
-0.548948	-1.272113	-0.585008		
-1.502269	3.569919	-0.123142		
1.699596	0.256484	-0.958346		
2.390402	-0.376802	0.275074		
3.885644	-0.606397	0.045135		
2.309614	0.564813	1.460645		
4.720370	0.094677	0.562449		
4.099750	-1.610043	-0.789547		
2.302444	1.094780	-1.319893		
1.705837	-0.502229	-1.743928		
1.895477	-1.306632	0.554883		
-3.101070	-0.808259	0.120729		
-3.306950	1.906233	0.230374		
-2.021568	0.219365	-0.137630		
-3.068226	-1.213928	1.414201		
-2.932947	-1.907741	-0.640744		
-4.328324	-0.322191	-0.116839		
3.185935	1.113678	1.482207		
2.243817	0.063567	2.349986		
1.488455	1.180051	1.371406		
5.053616	-1.716212	-0.949503		

	Iso	mer 3, 2.3kJ/1	mol	I	somer 4, 5.0kJ	/mol
С	-0.642484	1.719359	0.340143	-0.25819	1 2.377311	-0.270422
С	-0.504978	0.416453	0.841685	-0.580380	1.084184	-0.707549
С	0.726590	-0.231197	0.704683	0.377895	0.072271	-0.585051
С	1.644660	1.686792	-0.447728	1.932458	1.633461	0.420669
С	0.424893	2.347964	-0.291018	0.990381	2.648801	0.290837
Η	-1.578142	2.252653	0.467870	-0.964930	5 3.190733	-0.411918
Н	0.884887	-1.209289	1.150871	0.166659	-0.928149	-0.943432
Н	0.313114	3.360200	-0.660120	1.232240	3.654615	0.612035
С	-1.664872	-0.306887	1.493471	-1.953613	0.787848	-1.275044
С	-2.580243	-1.029744	0.475700	-2.918499	0.164392	-0.239503
С	-3.434811	-0.125243	-0.424546	-2.607579	9 -1.275518	0.199046
Ν	-1.775989	-1.875399	-0.492169	-2.92431	0.956178	1.053792
0	-4.125836	0.758878	0.277792	-2.567933	3 -1.585449	1.364357
0	-3.468038	-0.271224	-1.621504	-2.444510	-2.083575	-0.835438
Н	-2.232935	-1.797658	-1.419254	-1.898510	6 0.091787	-2.113939
Н	-2.300034	0.379127	2.056231	-2.409554	1.704810	-1.657441
Н	-1.295407	-1.049369	2.205674	-3.938914	0.166904	-0.630549
Н	-3.266162	-1.697585	1.002586	2.660860	-0.750236	0.053418
С	3.085197	-0.365987	-0.107444	2.902564	1.838203	0.855581
Н	2.474242	2.175908	-0.941559	1.621721	0.347165	-0.022176
С	1.792127	0.398905	0.053452	2.084117	-1.966468	0.180917
F	4.068784	0.386374	-0.614845	3.489476	-0.579890	1.097789
F	2.905514	-1.424174	-0.942943	3.414942	-0.782566	-1.064199
F	3.507791	-0.871195	1.069651	-2.994168	0.269379	1.828139
Η	-1.708955	-2.855259	-0.211199	-3.687510	1.632646	1.108919
Н	-0.822178	-1.488214	-0.579636	-2.026072	2 1.454890	1.154795
Н	-4.700794	1.274508	-0.313735	-2.299210) -2.994635	-0.525990

	Isomer 5, 13.2kJ/mol				
С	0.023108	2.184705	-0.038673		
С	0.299626	0.896600	0.443545		
С	-0.736067	-0.039515	0.504063		
С	-2.288615	1.576883	-0.407007		
С	-1.260868	2.521412	-0.451429		
Н	0.808167	2.933638	-0.066949		
Η	-0.564532	-1.022058	0.934254		

Isomer 6, 14.8kJ/mol					
-0.011873	2.107276	-0.493025			
0.285195	0.745655	-0.640189			
-0.735712	-0.194413	-0.459276			
-2.312800	1.580305	0.017477			
-1.304829	2.520797	-0.170407			
0.757152	2.853015	-0.671896			
-0.542091	-1.252122	-0.603125			

Н	-1.468802	3.524250	-0.804172	-1.527637	3.576904
С	1.702963	0.506289	0.856490	1.692961	0.293157
С	2.580076	0.140022	-0.364641	2.383385	-0.380956
С	3.989482	-0.271328	0.060336	3.824676	-0.774044
Ν	1.908341	-0.968866	-1.164031	2.329036	0.553416
0	4.778444	0.508050	0.497177	4.094305	-1.656734
0	4.181486	-1.601167	-0.088728	4.708152	0.024806
Н	1.680750	-0.335413	1.555857	2.296476	1.139571
Н	2.213671	1.327471	1.363436	1.697893	-0.444663
Н	2.660841	0.996555	-1.034823	1.839558	-1.281295
С	-3.094274	-0.765302	0.102933	-3.094238	-0.814980
Н	-3.288206	1.839225	-0.728710	-3.319409	1.896427
С	-2.022666	0.299327	0.071987	-2.023117	0.223180
F	-3.101411	-1.424500	1.279436	-3.054041	-1.232604
F	-2.861503	-1.694873	-0.862746	-2.920804	-1.905394
F	-4.319537	-0.268175	-0.103930	-4.325741	-0.335146
Н	2.062829	-1.878033	-0.714377	2.494195	0.059450
Н	0.894121	-0.784373	-1.211777	1.399957	0.998930
Н	2.278527	-1.037457	-2.115735	3.048829	1.279996
Н	5.070265	-1.843433	0.223161	5.615548	-0.222267

	Isomer 7, 15.0kJ/mol				
С	-0.628662	1.768265	0.355406		
С	-0.506120	0.467436	0.867928		
С	0.712000	-0.203190	0.719179		
С	1.646497	1.685801	-0.466837		
С	0.441587	2.370290	-0.297479		
Η	-1.554914	2.315688	0.487869		
Η	0.862120	-1.178032	1.175316		
Η	0.342556	3.381518	-0.673105		
С	-1.668742	-0.223674	1.551982		
С	-2.594401	-0.966060	0.565077		
С	-3.432241	-0.021126	-0.308630		
Ν	-1.786639	-1.908064	-0.318946		
0	-3.954215	0.962080	0.118172		
0	-3.531770	-0.482012	-1.574356		
Н	-2.300021	0.491006	2.082553		

-1.527637	3.576904	-0.079409
1.692961	0.293157	-0.972387
2.383385	-0.380956	0.235723
3.824676	-0.774044	-0.085555
2.329036	0.553416	1.437785
4.094305	-1.656734	-0.839408
4.708152	0.024806	0.555217
2.296476	1.139571	-1.314194
1.697893	-0.444663	-1.777917
1.839558	-1.281295	0.523362
-3.094238	-0.814980	0.121259
-3.319409	1.896427	0.260037
-2.023117	0.223180	-0.130056
-3.054041	-1.232604	1.410935
-2.920804	-1.905394	-0.651159
-4.325741	-0.335146	-0.107186
2.494195	0.059450	2.318857
1.399957	0.998930	1.472245
3.048829	1.279996	1.359105
5.615548	-0.222267	0.307277

Isomer 8, 18.2kJ/mol					
-0.309314	1.827215	-0.856452			
-0.432855	0.435726	-0.872966			
0.660372	-0.352026	-0.507743			
1.972972	1.636120	-0.091673			
0.888562	2.423029	-0.468562			
-1.144621	2.451821	-1.156028			
0.597103	-1.434660	-0.532695			
0.978247	3.502435	-0.463851			
-1.730288	-0.220347	-1.298094			
-2.498957	-0.889919	-0.132123			
-3.082158	0.115989	0.869490			
-3.727610	-1.602115	-0.685812			
-4.237541	0.463901	0.794453			
-2.191064	0.522016	1.751595			
-1.516976	-1.001839	-2.037465			

Η	-1.305585	-0.939912	2.294292
Н	-3.306116	-1.591452	1.110928
С	3.051441	-0.392592	-0.134398
Н	2.477493	2.155144	-0.977304
С	1.778143	0.399810	0.044405
F	2.840151	-1.438049	-0.980572
F	3.471693	-0.922237	1.032857
F	4.048756	0.340767	-0.642243
Н	-2.309196	-2.142189	-1.170637
Н	-1.539424	-2.770234	0.173794
Н	-0.907218	-1.441430	-0.595040
Н	-4.107771	0.101713	-2.096744

-2.383648	0.515063	-1.777950
-1.876919	-1.627348	0.374336
3.038724	-0.623145	0.235901
2.903758	2.096089	0.215143
1.853781	0.246729	-0.112171
2.646317	-1.801773	0.773800
3.858674	-0.026587	1.118324
3.770521	-0.917092	-0.861335
-4.513942	-0.929663	-0.605351
-3.977072	-2.430787	-0.138823
-3.603357	-1.885812	-1.661014
-2.585102	1.185030	2.345254

	Isomer 9, 18.4kJ/mol				
С	-0.220482	2.258150	-0.204925		
С	-0.489197	1.064305	0.473860		
С	0.525183	0.119645	0.620834		
С	2.049892	1.541818	-0.605849		
С	1.041388	2.494699	-0.739974		
Н	-0.990375	3.017529	-0.303236		
Н	0.346617	-0.798910	1.169238		
Н	1.244908	3.425334	-1.255306		
С	-1.863416	0.798427	1.051138		
С	-2.904061	0.344538	-0.003471		
С	-2.589055	-1.026225	-0.618845		
Ν	-4.245762	0.129282	0.687211		
0	-1.733395	-0.944591	-1.617553		
0	-3.098295	-2.030514	-0.179243		
Η	-4.279181	-0.875382	0.945471		
Η	-2.248952	1.713408	1.515737		
Η	-1.799704	0.033790	1.832172		
Η	-3.034107	1.099821	-0.778000		
С	2.845835	-0.712751	0.200002		
Η	3.034533	1.724999	-1.016358		
С	1.788125	0.358097	0.079029		
F	4.084699	-0.230669	0.017213		
F	2.650753	-1.686802	-0.725388		
F	2.808814	-1.313506	1.408637		

Η	-5.038827	0.311824	0.066092
Η	-4.349264	0.711684	1.522078
Н	-1.515459	-1.833657	-1.948957

3-CF₃-Phe·H⁺: The comparison between experimental IRMPD and calculated IR spectra

3,4-(O<u>Me)₂-Phe•H⁺</u>

Table S9 The Gibbs' Energies and Relative energies of 3,4-(OMe) ₂ -Phe \cdot H ⁺					
3,4(MeO) ₂ -Phe Isomer	Gibbs (hartree)	Relative energy (kJ/mol)			
Isomer 1	-784.2176	0.00			
Isomer 2	-784.2170	1.46			
Isomer 3	-784.2169	1.71			
Isomer 4	-784.2165	2.89			
Isomer 5	-784.2162	3.67			
Isomer 6	-784.2157	4.98			
Isomer 7	-784.2153	6.04			
Isomer 8	-784.2151	6.47			
Isomer 9	-784.2143	8.71			
Isomer 10	-784.2140	9.44			
Isomer 11	-784.2119	15.06			
Isomer 12	-784.2118	15.21			
Isomer 13	-784.2113	16.54			
Isomer 14	-784.2109	17.68			
Isomer 15	-784.2106	18.37			
Isomer 16	-784.2102	19.31			
Isomer 17	-784.2092	22.08			
Isomer 18	-784.2072	27.36			
Isomer 19	-784.2068	28.43			
Isomer 20	-784.2067	28.59			
Isomer 21	-784.2067	28.65			
Isomer 22	-784.2044	34.56			
Isomer 23	-784.2042	35.28			
Isomer 24	-784.2013	42.79			

3,4-(OMe)₂-Phe·H⁺: The XYZ atomic coordinates and structures

	Isomer 1, 0.0kJ/mol				Iso	mer 2, 1.5kJ/
С	-0.240188	-0.139429	-0.696651	-0).353591	-0.060859
С	0.326587	-1.411528	-0.736286	0	.230846	-1.320594
С	1.682701	-1.599335	-0.425411	1	.581933	-1.517478
С	2.483930	-0.521179	-0.070549	2	.370443	-0.467273
С	1.912821	0.788414	-0.033446	1	.790849	0.825306
С	0.565556	0.957501	-0.334323	0	.444461	0.997995
Н	-0.255120	-2.263120	-1.077369	-0	.342186	-2.149493
Н	0.139030	1.952939	-0.325880	0	.043881	2.000846
С	-1.713704	0.049647	-0.967693	-1	.825806	0.145973
Н	-1.915568	0.965015	-1.527366	-2	2.015060	1.067661
Н	-2.099996	-0.783390	-1.562640	-2	2.220853	-0.678218
С	-2.525927	0.144947	0.356392	-2	2.634238	0.245198
Н	-2.293846	1.074885	0.874545	-2	2.392857	1.171679
С	-4.028319	0.008161	0.127367	-4	.138756	0.121488
Ν	-2.141311	-1.002249	1.262554	-2	2.259356	-0.907819
Н	-2.151279	-0.743355	2.250917	-2	2.262655	-0.647554
Н	-2.835244	-1.755532	1.129190	-2	.963997	-1.651900
0	-4.628411	-1.001413	0.406207	-4	.746584	-0.882142
0	-4.536935	1.095541	-0.434880	-4	.639148	1.211308
Н	-5.485071	0.965512	-0.607889	-5	5.589392	1.090680
Н	-1.187196	-1.322014	1.005032	-1	.312280	-1.239719
Н	2.105693	-2.592365	-0.488577	2	.012162	-2.500774
0	2.762654	1.775119	0.295003	2	.446121	1.903380
0	3.788913	-0.587874	0.236209	3	.664846	-0.585983
С	2.302027	3.126580	0.292337	3	.766440	2.241761
Н	3.167965	3.729351	0.555047	3	.900261	3.290251
Н	1.941402	3.416960	-0.699002	4	.527006	1.631851
Н	1.514762	3.277248	1.038123	3	.818568	2.121511
С	4.455489	-1.851279	0.170811	4	.318338	-1.852284
Н	5.488285	-1.648370	0.443196	5	.337809	-1.692246
Н	4.022532	-2.561861	0.881385	3	.838139	-2.610019
H	4.417212	-2.262154	-0.842194	4	.329575	-2.177718

0.066356

-0.238938

-1.248842 -0.132688

-0.965019

-1.518916

-1.566456

0.358563

0.878769

0.134138

1.263710

2.251971

1.133083

0.418624

-0.429240

-0.597495

1.007175

-0.670685 0.552806

0.295558 0.071434 0.329993 0.553755 -1.013209

0.159591

0.502323 0.785336

-0.884351

	Isomer 3, 1.7kJ/mol		 Isomer 4, 2.9kJ/mol			
С	0.356088	-0.370532	-0.657425	0.240659	-0.397297	-0.662552
С	-0.273429	-1.601228	-0.476234	-0.378627	-1.625550	-0.466010
С	-1.624127	-1.659754	-0.134961	-1.734528	-1.691357	-0.127831
С	-2.377172	-0.496084	0.051954	-2.493521	-0.533575	0.024276
С	-1.757448	0.762460	-0.154059	-1.874496	0.732617	-0.182214
С	-0.405413	0.799155	-0.500419	-0.518998	0.784226	-0.509493
Н	0.274829	-2.526972	-0.615191	0.174932	-2.549420	-0.597548
Н	0.016101	1.779060	-0.707277	-0.063274	1.743200	-0.728227
С	1.834615	-0.271053	-0.951119	1.719428	-0.300717	-0.959987
Н	2.176266	-1.084397	-1.593753	2.042454	-1.061894	-1.672609
Н	2.061573	0.665718	-1.469260	1.960814	0.672105	-1.398856
С	2.679941	-0.348216	0.351330	2.570049	-0.504777	0.325970
Н	2.614348	-1.347418	0.781102	2.516158	-1.543838	0.648891
С	4.135419	0.053319	0.123886	4.019881	-0.064178	0.142948
Ν	2.140903	0.631209	1.371192	2.018760	0.356764	1.441308
Н	2.685745	1.504721	1.289735	2.572883	1.228173	1.467707
Н	1.136091	0.801589	1.183805	1.019271	0.554307	1.252042
0	4.570956	1.115889	0.495320	4.441764	0.960121	0.623324
0	4.798989	-0.878364	-0.545747	4.694886	-0.911505	-0.619927
Н	5.709534	-0.580265	-0.712684	5.601403	-0.586050	-0.754711
Н	2.245756	0.293339	2.330037	2.100573	-0.089431	2.357002
Н	-2.088773	-2.627183	-0.001698	-2.197616	-2.659850	0.002123
0	-2.367968	1.956446	0.029734	-2.680802	1.801013	-0.051699
0	-3.671726	-0.476757	0.436758	-3.798310	-0.494341	0.339511
С	-3.676339	2.203387	-0.534067	-2.170334	3.102912	-0.333533
Н	-3.781947	3.286346	-0.537685	-3.009804	3.780794	-0.199090
Η	-3.725426	1.825873	-1.558212	-1.370859	3.375649	0.364047
Н	-4.455838	1.747372	0.072092	-1.807871	3.170256	-1.363822
С	-4.363408	-1.714405	0.636674	-4.512359	-1.722372	0.506268
Н	-4.396034	-2.299407	-0.286616	-5.534965	-1.433387	0.736128
Н	-3.899004	-2.298023	1.436537	-4.496369	-2.312952	-0.414224
Н	-5.373912	-1.438822	0.928849	 -4.102282	-2.306898	1.335268

	Ison	mer 5, 3.7kJ/r	nol	Iso	mer 6, 5.0kJ/1	mol
С	0.367453	-0.679780	-0.919337	0.546417	-0.320388	-0.911601
С	-0.467235	-1.777596	-0.714870	0.248869	1.041611	-0.923485
С	-1.780039	-1.603165	-0.250181	-1.001110	1.496029	-0.503879
С	-2.273462	-0.331860	0.015829	-1.981023	0.609822	-0.046805
С	-1.429379	0.800441	-0.198201	-1.706163	-0.781197	-0.059154
С	-0.128011	0.611065	-0.651395	-0.450906	-1.215346	-0.488104
Η	-0.137371	-2.776935	-0.985133	0.978618	1.761376	-1.277015
Η	0.500665	1.472340	-0.837255	-0.303809	-2.290727	-0.543481
С	1.796945	-0.884545	-1.364746	1.913293	-0.846061	-1.285986
Η	1.889111	-1.826757	-1.911017	1.837141	-1.862178	-1.682392
Η	2.136789	-0.095303	-2.037352	2.384147	-0.239413	-2.060900
С	2.792948	-0.927407	-0.172727	2.888349	-0.874213	-0.080205
Η	3.746157	-1.355638	-0.491042	3.766677	-1.480752	-0.314567
С	3.099924	0.420358	0.488712	3.394961	0.493083	0.395225
Ν	2.240642	-1.786953	0.942600	2.220399	-1.477163	1.137533
Н	2.429361	-1.297898	1.835347	1.192473	-1.367786	1.038369
Н	1.209406	-1.853839	0.814993	2.438432	-2.465766	1.268706
Ο	2.990958	0.591219	1.678497	3.336084	0.829608	1.552740
Ο	3.524254	1.316762	-0.391365	3.922116	1.197144	-0.595800
Н	3.765580	2.138051	0.069471	4.277393	2.033374	-0.249678
Н	2.639066	-2.726347	0.963796	2.524298	-0.929080	1.961468
Н	-2.415102	-2.469171	-0.124686	-1.204631	2.557978	-0.522031
Ο	-1.993201	1.991728	0.060282	-2.557201	-1.735966	0.384346
Ο	-3.511170	-0.052216	0.453384	-3.188769	0.983493	0.428604
С	-1.245891	3.185785	-0.169685	-3.945887	-1.723431	-0.018043
Η	-0.361531	3.226969	0.474419	-4.513993	-0.998463	0.560408
Η	-0.951916	3.270011	-1.220359	-4.030044	-1.503696	-1.084979
Η	-1.916752	4.002403	0.085994	-4.305245	-2.731717	0.177587
С	-4.439631	-1.122335	0.645870	-3.533398	2.372981	0.454443
Н	-4.624837	-1.653777	-0.292131	-2.848488	2.934175	1.096266
Н	-4.082873	-1.820157	1.409463	-3.536720	2.795407	-0.554197
H	-5.358700	-0.650999	0.985295	-4.537287	2.415830	0.870155

14 m	ំ 🎽
	in the second second
 	5

_

	Isoi	mer 7, 6.0kJ/r	nol	 Iso	mer 8, 6.5kJ/i	mol
С	0.541602	-0.611905	-0.932581	-0.435173	0.267282	-0.866271
С	-0.244096	-1.755501	-0.759723	-0.218557	-1.104191	-0.814169
С	-1.557880	-1.652063	-0.290683	1.018576	-1.614935	-0.406483
С	-2.111178	-0.410053	0.021840	2.060780	-0.766932	-0.042351
С	-1.332441	0.762585	-0.180983	1.860333	0.642056	-0.104591
С	-0.025230	0.635828	-0.642374	0.618404	1.137409	-0.502405
Η	0.133968	-2.732860	-1.046272	-0.996859	-1.796287	-1.115929
Η	0.529231	1.554732	-0.796205	0.487789	2.207910	-0.614849
С	1.981171	-0.727456	-1.380224	-1.782168	0.845545	-1.238188
Η	2.135724	-1.664422	-1.921824	-1.671453	1.871054	-1.600281
Η	2.264930	0.079620	-2.057663	-2.261272	0.279805	-2.038796
С	2.974912	-0.691983	-0.190395	-2.770505	0.863043	-0.041719
Η	3.963048	-1.032719	-0.508571	-3.605131	1.538923	-0.243559
С	3.161709	0.671664	0.487654	-3.371398	-0.494206	0.344478
Ν	2.501565	-1.605398	0.919979	-2.075661	1.341597	1.215623
Η	1.477788	-1.742527	0.811980	-1.053150	1.206554	1.095078
Η	2.964779	-2.514835	0.920447	-2.262945	2.321073	1.432554
0	3.064884	0.807154	1.683054	-3.338491	-0.908384	1.477851
0	3.473444	1.619352	-0.383337	-3.942617	-1.094231	-0.689091
Η	3.625380	2.457911	0.085033	-4.354841	-1.925667	-0.398998
Η	2.671900	-1.113607	1.815873	-2.395648	0.734996	1.992303
Η	-2.146231	-2.551562	-0.172206	1.164804	-2.686147	-0.388834
0	-1.747863	2.014155	0.114982	2.926110	1.394659	0.223107
0	-3.350269	-0.230358	0.527623	3.281399	-1.159865	0.356189
С	-3.066702	2.466901	-0.264757	2.848239	2.812677	0.096071
Η	-3.005213	3.553317	-0.252648	2.624580	3.105520	-0.934376
Η	-3.312526	2.124031	-1.272422	2.098485	3.231917	0.776308
Η	-3.817568	2.121727	0.442414	3.831304	3.185285	0.373807
С	-4.195825	-1.366674	0.731918	3.583177	-2.557272	0.401093
Η	-4.395185	-1.882342	-0.211677	4.615097	-2.619586	0.737747
Η	-3.753531	-2.059263	1.453790	2.934107	-3.077203	1.111964
Η	-5.125266	-0.969900	1.133363	 3.493308	-3.009597	-0.590737

|--|

	Ison	mer 9, 8.7kJ/r	nol	Ison	ner 10, 9.4kJ/	mol
С	0.284013	-0.500389	-0.580444	0.440047	-0.795356	-0.855514
С	-0.203976	-1.766670	-0.257073	-0.217798	-1.985744	-0.528572
С	-1.533804	-1.922786	0.124226	-1.517586	-1.952934	-0.017344
С	-2.406627	-0.838011	0.202174	-2.184842	-0.750373	0.185757
С	-1.918550	0.455906	-0.111008	-1.519887	0.465118	-0.135088
С	-0.580399	0.606242	-0.497546	-0.223104	0.424391	-0.652948
Н	0.433516	-2.641529	-0.332748	0.241122	-2.946542	-0.745677
Н	-0.218001	1.586814	-0.783334	0.273623	1.349776	-0.914892
С	1.737749	-0.292766	-0.942955	1.869306	-0.834352	-1.346495
Н	2.086727	-1.031292	-1.667550	2.066015	-1.782259	-1.853859
Н	1.884144	0.692980	-1.394221	2.081089	-0.041503	-2.065463
С	2.654604	-0.424895	0.305122	2.900226	-0.688936	-0.193259
Н	2.695753	-1.462859	0.633245	3.890140	-1.005068	-0.530292
С	4.057211	0.125359	0.059181	3.050319	0.720108	0.390793
Ν	2.086908	0.398131	1.441568	2.508849	-1.554374	0.984609
Н	2.574807	1.308809	1.443654	2.669571	-1.000921	1.844654
Н	1.069592	0.518103	1.295068	1.491566	-1.761384	0.914019
Ο	4.418131	1.181362	0.520064	2.963598	0.937061	1.574688
Ο	4.762267	-0.671312	-0.729987	3.320022	1.617170	-0.547907
Н	5.635287	-0.279119	-0.903137	3.471341	2.484884	-0.136419
Н	2.239372	-0.036989	2.353735	3.026649	-2.432915	1.029351
Н	-1.933235	-2.901094	0.362336	-2.047722	-2.867567	0.218224
Ο	-2.794527	1.479334	0.008706	-2.203856	1.602457	0.112731
Ο	-3.658655	-1.087141	0.646744	-3.411997	-0.810322	0.749590
С	-2.394663	2.798830	-0.363440	-1.612617	2.865554	-0.198042
Η	-3.272604	3.423620	-0.216771	-2.356287	3.611074	0.073534
Η	-1.584146	3.161929	0.276975	-0.704943	3.028730	0.391102
Η	-2.090178	2.838127	-1.413471	-1.390145	2.944611	-1.266219
С	-4.804856	-0.550816	-0.049590	-4.518391	-0.083510	0.171420
Η	-4.677939	-0.658279	-1.129720	-4.477549	0.970989	0.436181
Η	-5.645269	-1.157772	0.280905	-4.522953	-0.201089	-0.915218
H	-4.968108	0.493659	0.207963	-5.409643	-0.544914	0.591646

	Isomer 11, 15.1kJ/mol		_	Isomer 12, 15.2kJ/mol			
С	0.349783	-0.367338	-0.665041		-0.347499	-0.085017	-0.693034
С	-0.280554	-1.598571	-0.487619		0.243133	-1.343839	-0.826591
С	-1.629453	-1.658086	-0.140255		1.593858	-1.531562	-0.515798
С	-2.380813	-0.494814	0.056381		2.376953	-0.472212	-0.056101
С	-1.760816	0.764229	-0.145220		1.791300	0.818995	0.063866
С	-0.410742	0.801763	-0.497945		0.445509	0.982643	-0.248282
Н	0.266570	-2.523713	-0.634624		-0.325778	-2.180497	-1.220845
Н	0.009947	1.782781	-0.701190		0.041027	1.985466	-0.157087
С	1.827023	-0.272742	-0.968819		-1.817204	0.120252	-0.982876
Н	2.164235	-1.091626	-1.606921		-1.999527	1.030081	-1.558652
Н	2.058021	0.659613	-1.493716		-2.213692	-0.715023	-1.568256
С	2.674257	-0.353938	0.329335		-2.630852	0.262203	0.330455
Н	2.538009	-1.329897	0.794812		-2.327553	1.167389	0.856014
С	4.159859	-0.154427	0.048294		-4.130024	0.334905	0.065239
Ν	2.160601	0.677280	1.321831		-2.288536	-0.906098	1.241565
Н	1.129443	0.734051	1.222029		-2.448754	-0.693778	2.228825
Н	2.395302	0.440150	2.288342		-2.861382	-1.722487	1.002300
0	4.834891	-0.986448	-0.476201		-4.659007	1.300837	-0.392766
0	4.573882	1.079996	0.420065		-4.744240	-0.834594	0.365622
Н	5.509969	1.195329	0.184811		-5.688286	-0.774075	0.142133
Н	2.568467	1.596965	1.122238		-1.287605	-1.133991	1.095568
Н	-2.093971	-2.626007	-0.010278		2.028563	-2.514536	-0.634285
0	-2.370018	1.957848	0.049604		2.441302	1.904190	0.541614
0	-3.673372	-0.476388	0.447050		3.671061	-0.580764	0.311465
С	-3.676113	2.210716	-0.517049		3.754829	2.250508	0.047306
Н	-4.457626	1.742795	0.077321		4.523557	1.643015	0.519692
Н	-3.784831	3.293291	-0.503643		3.795505	2.133745	-1.038277
Н	-3.718505	1.849824	-1.547523		3.886258	3.298893	0.307330
С	-4.365371	-1.714701	0.643603		4.332051	-1.844408	0.187618
Н	-4.402615	-2.294665	-0.282628		5.350514	-1.675059	0.528853
Н	-3.897783	-2.302807	1.438246		3.856372	-2.598972	0.820619
Н	-5.374255	-1.439662	0.941774		4.345277	-2.179652	-0.853183

	lsom	er 13, 16.5kJ	/mol	lson	er 14, 17.7kJ	/mol	
С	0.236186	-0.370721	-0.661591	0.547541	-0.307701	-0.938689	
С	-0.372031	-1.606294	-0.470783	0.232907	1.051111	-0.963741	
С	-1.726041	-1.686887	-0.129603	-1.015064	1.495142	-0.526956	
С	-2.495655	-0.536845	0.029211	-1.975346	0.603594	-0.039373	
С	-1.888580	0.736008	-0.171205	-1.682160	-0.783449	-0.034961	
С	-0.534593	0.802206	-0.500297	-0.430905	-1.208272	-0.483028	
Н	0.189020	-2.524284	-0.611752	0.949030	1.773327	-1.338204	
Н	-0.087269	1.767031	-0.710033	-0.273747	-2.282835	-0.527585	
С	1.711902	-0.265335	-0.975299	1.911841	-0.819944	-1.345544	
Н	2.027883	-1.008213	-1.710383	1.840371	-1.833700	-1.749908	
Η	1.951846	0.717942	-1.391605	2.362620	-0.197964	-2.120327	
С	2.573251	-0.511826	0.292490	2.908665	-0.833918	-0.163809	
Η	2.451640	-1.542836	0.623017	3.806520	-1.403239	-0.419225	
С	4.053541	-0.256624	0.033650	3.384764	0.569294	0.231783	
Ν	2.051626	0.369641	1.416672	2.275535	-1.525228	1.034792	
Η	2.461616	1.307392	1.351222	1.264541	-1.287275	1.044831	
Η	1.022020	0.436591	1.312607	2.354971	-2.542647	0.970848	
0	4.738762	-1.005121	-0.593195	3.712069	1.392416	-0.566764	
0	4.450769	0.929526	0.554297	3.432888	0.717733	1.575344	
Η	5.383809	1.087298	0.332003	3.780546	1.598011	1.795798	
Η	2.276491	-0.002033	2.342216	2.701922	-1.204143	1.910380	
Η	-2.179621	-2.660446	-0.004251	-1.232538	2.554077	-0.558645	
0	-2.704807	1.796534	-0.032209	-2.513611	-1.740718	0.442654	
0	-3.799927	-0.511500	0.347091	-3.180047	0.968474	0.450803	
С	-2.209460	3.103393	-0.315851	-3.901132	-1.766421	0.037041	
Н	-3.055433	3.772539	-0.178169	-4.480234	-1.019928	0.575951	
Η	-1.410274	3.384977	0.378749	-3.984092	-1.602799	-1.040202	
Η	-1.851538	3.174719	-1.347512	-4.249041	-2.767699	0.282864	
С	-4.502559	-1.747122	0.507874	-3.547574	2.352355	0.449708	
Η	-5.527384	-1.468733	0.740852	-4.546262	2.388338	0.878427	
Η	-4.482501	-2.332158	-0.416019	-2.863560	2.939748	1.068682	
Η	-4.085839	-2.332505	1.332906	-3.571406	2.751343	-0.568098	

	Isom	er 15, 18.4kJ/	mol	Isom	ier 16, 19.3k.
С	0.539141	-0.632889	-0.929323	-0.269118	-0.267678
С	-0.246179	-1.772992	-0.732359	0.180148	-1.590586
С	-1.556302	-1.663716	-0.255201	1.504096	-1.867166
С	-2.106673	-0.416716	0.043281	2.398897	-0.849061
С	-1.327218	0.751694	-0.178050	1.946099	0.499241
С	-0.025031	0.620697	-0.651399	0.623150	0.768348
Η	0.131050	-2.755096	-1.003287	-0.467169	-2.406803
Η	0.528790	1.536450	-0.824105	0.282481	1.795349
С	1.972958	-0.754750	-1.399158	-1.716433	0.036502
Η	2.125731	-1.706426	-1.915276	-1.830743	0.962288
Η	2.242135	0.036702	-2.100832	-2.158546	-0.764862
С	2.981168	-0.664185	-0.228902	-2.542250	0.215010
Η	3.971415	-1.004246	-0.542226	-2.175682	1.080426
С	3.163036	0.764622	0.297895	-4.023754	0.422470
Ν	2.530006	-1.583965	0.896215	-2.321562	-0.996148
Η	1.491089	-1.597370	0.890036	-1.339770	-1.312055
Η	2.858449	-2.542246	0.759349	-2.484477	-0.790805
Ο	3.326425	1.701592	-0.421481	-4.457225	1.444350
Ο	3.165051	0.802165	1.649530	-4.740921	-0.698493
Η	3.313581	1.713582	1.952660	-5.670890	-0.552751
Η	2.854998	-1.237046	1.805121	-2.958498	-1.754268
Η	-2.143608	-2.561602	-0.120252	1.874181	-2.884814
Ο	-1.743910	2.004702	0.115486	2.848259	1.443453
Ο	-3.342657	-0.227865	0.552600	3.638431	-1.214064
С	-3.040062	2.467157	-0.325983	2.481699	2.824485
Η	-3.830501	2.096377	0.322901	3.372923	3.374931
Η	-2.984756	3.552678	-0.274997	2.188907	3.113838
Η	-3.222409	2.157584	-1.357943	1.673420	3.044912
С	-4.191701	-1.359157	0.770243	4.805771	-0.586317
Н	-3.751017	-2.045434	1.499146	5.627795	-1.264542
Н	-5.119440	-0.955051	1.168300	4.689930	-0.489261
Η	-4.393633	-1.884434	-0.167446	4.988892	0.388005

Isomer 16, 19.3kJ/mol						
-0.269118	-0.267678	-0.671707				
0.180148	-1.590586	-0.617825				
1.504096	-1.867166	-0.266248				
2.398897	-0.849061	0.043292				
1.946099	0.499241	0.000793				
0.623150	0.768348	-0.356566				
-0.467169	-2.406803	-0.926698				
0.282481	1.795349	-0.402293				
-1.716433	0.036502	-0.981851				
-1.830743	0.962288	-1.548844				
-2.158546	-0.764862	-1.582059				
-2.542250	0.215010	0.321414				
-2.175682	1.080426	0.872909				
-4.023754	0.422470	0.026741				
-2.321562	-0.996148	1.212465				
-1.339770	-1.312055	1.081829				
-2.484477	-0.790805	2.200727				
-4.457225	1.444350	-0.410611				
-4.740921	-0.698493	0.274847				
-5.670890	-0.552751	0.032221				
-2.958498	-1.754268	0.944656				
1.874181	-2.884814	-0.243559				
2.848259	1.443453	0.341785				
3.638431	-1.214064	0.439746				
2.481699	2.824485	0.286866				
3.372923	3.374931	0.578705				
2.188907	3.113838	-0.726465				
1.673420	3.044912	0.990752				
4.805771	-0.586317	-0.135536				
5.627795	-1.264542	0.083826				
4.689930	-0.489261	-1.217912				

0.312582

3,4-(OMe)₂-Phe·H⁺: The comparison between experimental IRMPD and calculated IR spectra

4-NO₂-Phe•H⁺

Table S10 The Gibbs' Energies and Relative energies of 4-NO ₂ -Phe·H ⁺						
4NO ₂ -Phe Isomer	Gibbs (hartree)	Relative energy (kJ/mol)				
Isomer 1	-759.7142	0.00				
Isomer 2	-759.7126	3.98				
Isomer 3	-759.7091	13.25				
Isomer 4	-759.7080	16.16				
Isomer 5	-759.7079	16.56				
Isomer 6	-759.7018	32.39				
Isomer 7	-759.7001	37.00				
Isomer 8	-759.6995	38.56				
Isomer 9	-759.6988	40.25				

4-NO₂-Phe·H⁺: The XYZ atomic coordinates and structures

		=d 3€ 3-d9 }=d3					
Isomer 3, 13.3kJ/mol							
С	-0.117623	0.222183	-0.638025				
С	0.588225	-0.960726	-0.899520				
С	1.951459	-1.054258	-0.621291				

Isomer 2, 4.0kJ/mol						
-0.355727	0.533871	-0.876381				
0.524418	1.565312	-0.513702				
1.833784	1.285501	-0.125199				
2.249201	-0.037959	-0.109489				
1.410819	-1.082127	-0.482157				
0.105573	-0.789517	-0.862786				
0.209533	2.602677	-0.585748				
-0.546212	-1.597025	-1.176437				
-1.786732	0.859924	-1.251717				
-1.854712	1.885675	-1.623175				
-2.146517	0.211593	-2.052566				
-2.778972	0.706531	-0.074810				
-3.742051	1.147537	-0.343182				
-3.057236	-0.729828	0.395144				
-2.283331	1.419910	1.168661				
-1.254691	1.497352	1.139287				
-2.681767	2.353600	1.282886				
-2.992198	-1.037459	1.559718				
-3.403490	-1.519073	-0.608689				
-3.632366	-2.403168	-0.272880				
-2.531650	0.821811	1.979227				
1.786948	-2.096508	-0.477220				
2.528304	2.069634	0.145361				
4.341078	0.592091	0.656128				
3.986775	-1.518724	0.274826				
3.645771	-0.348213	0.307790				

Isomer 4, 16.2kJ/mol						
0.291033	-0.660126	0.598777				
0.440458	-1.450461	-0.294980				
1.777465	-1.172839	-0.553831				

С	2.593227	0.050033	-0.080232	-2.370553	-0.098564	0.098345
Ċ	1.926465	1.242690	0.178653	-1.676417	0.694197	1.002001
С	0.566742	1.321602	-0.100450	-0.337575	0.405749	1.248668
Н	0.088126	-1.803841	-1.366850	0.022454	-2.300769	-0.785710
Н	0.044757	2.255821	0.079196	0.210415	1.011912	1.962077
С	-1.605725	0.301888	-0.909586	1.748001	-0.970109	0.874966
Н	-1.876236	1.257447	-1.364112	2.073836	-0.456078	1.784700
Н	-1.912767	-0.481344	-1.609591	1.862983	-2.047024	1.045802
С	-2.437902	0.191298	0.388382	2.699093	-0.583793	-0.284716
Η	-2.182575	1.005970	1.067005	2.423895	-1.095982	-1.206211
С	-3.938346	0.260106	0.101137	2.801784	0.931679	-0.509373
Ν	-2.083382	-1.099415	1.116901	4.121093	-0.991345	0.082104
Η	-2.378623	-1.082115	2.096950	4.681390	-1.233458	-0.739992
Η	-2.551796	-1.898832	0.676325	4.558311	-0.157742	0.519224
0	-4.471502	1.258929	-0.270283	3.708554	1.567097	-0.025164
0	-4.531127	-0.940379	0.286693	1.814659	1.397873	-1.247797
Η	-5.476549	-0.880083	0.065968	1.889192	2.364267	-1.338232
Η	-1.063357	-1.242192	1.078108	4.143351	-1.782498	0.730669
Η	2.473631	2.084746	0.581183	-2.182846	1.510810	1.498509
Η	2.514647	-1.954463	-0.828296	-2.361669	-1.773337	-1.237790
0	4.593947	-1.111981	0.004498	-4.382755	-0.516552	-0.968562
0	4.584140	0.954302	0.680277	-4.288527	1.161134	0.409324
N	4.048805	-0.043012	0.225988	 -3.801294	0.206930	-0.175619

Isomer 5, 16.6kJ/mol							
-0.354959	0.547216	-0.887713					
0.502558	1.571573	-0.455803					
1.807898	1.292085	-0.055159					
2.243537	-0.024593	-0.097968					
1.429298	-1.059988	-0.541320					
0.126593	-0.768978	-0.933742					
0.174372	2.607055	-0.482702					
-0.508658	-1.567733	-1.298145					
-1.782709	0.870498	-1.282654					
-1.856704	1.903703	-1.632786					
-2.120968	0.232796	-2.101287					
-2.792684	0.666806	-0.134569					
	Isom -0.354959 0.502558 1.807898 2.243537 1.429298 0.126593 0.174372 -0.508658 -1.782709 -1.856704 -2.120968 -2.792684	Isomer 5, 16.6kJ/-0.3549590.5472160.5025581.5715731.8078981.2920852.243537-0.0245931.429298-1.0599880.126593-0.7689780.1743722.607055-0.508658-1.567733-1.7827090.870498-1.8567041.903703-2.1209680.232796-2.7926840.666806					

Η	-3.765101	1.084858	-0.408865
С	-3.040581	-0.810633	0.205791
Ν	-2.342095	1.416686	1.113602
Н	-2.547718	2.417021	1.048250
Н	-2.796674	1.030818	1.949309
Ο	-3.155721	-1.654916	-0.627675
0	-3.158971	-0.992655	1.538509
Η	-3.367987	-1.922594	1.731676
Н	-1.321076	1.311759	1.222234
Н	1.820976	-2.067697	-0.582204
Н	2.484917	2.071587	0.267918
Ο	4.310602	0.598191	0.738339
Ο	3.993725	-1.498021	0.257386
N	3.635500	-0.334727	0.333963

4-NO₂-Phe·H⁺: The comparison between experimental IRMPD and calculated IR spectra

Structure	Vibrational modes (cm ⁻¹)											
	1780-1730	1460-1380 1190-1100								0		
	1749	1428				1398				1141		
Phe-H ⁺	C=O Stretch	NUL Luch and L			COH Bend, CH &				COH Bend,			
	NH ₂ Scissor		H ₃ UIII	orena		NH ₂ Wag				Ring	H Scis	sor
IRMPD	1790-1745	1620-1	540			1500	1500-1360			1330-1080		
	1774	1609	1593	1488		1452		1397		1260		1166
3F-Phe-H ⁺	C=O Stretch, NH ₂ Scissor	Ring Str	Ring StretchRing RockNH3COH Bend UmbrellaC-F Strete Ring Stretch		ch Ring Rock		NH ₃ Umbrella COH Bend CH Wa		etch, retch	COH Bend		
IRMPD	1860-1740	1630-1563	3		1	563-1	375			131	0 - 10	63
	1774	1609		1509		14	148	1397	'	124.	3	1166
4F-Phe-H ⁺	C=O Stretch, NH ₂ Scissor	Ring Stretch	Rin	Ring H Wag		NH3 Umbrella		COH Bend CH & NH ₂ Wag	[,, ,, ,,	C-F Stro Ring Str	etch, retch	COH Bend
IRMPD	1850 - 1750		1650-1375						1375	- 107	5	
	1792	1497	146	59	14	36	6 1408			1382, 1168	1	161
$2,5F_2$ -Phe-H ⁺	C=O Stretch, NH ₂ Scissor	NH3 Umbrella	CH Scis	CH ₂ Rin Scissor Stre		$\begin{array}{c c} & \text{COH Bend,} \\ \text{tch} & \text{CH \& NH}_2 \\ & \text{Wag} \end{array}$			COH Bend	Asym. C-F Stretch, Ring Stretch		
IRMPD	1800 - 1740	1650-155)		1	500-1	300			123	0 - 10	80
	1774	1604	1	454	1.	397	134	5 131	5	1167	1	128
$3,5F_2$ -Phe-H ⁺	C=O Stretch, NH ₂ Scissor	Ring Stretch	N Um , C Sc	NH ₃ Umbrella , CH ₂ Scissor		COH Bend, CH, NH ₂ & CH ₂ Wag, & C-F Stretcl			ڈ h	COH Bend	OH Asym. C-F Stretch, Ring H Wag	
IRMPD	1790 - 1760			154	0-14	-00				120	0 - 10	90
	1774	1509)		14	92		1476		1168		1109
F ₅ -Phe-H ⁺	C=O Stretch, NH ₂ Scissor	Rin	Ring Stretch, CH ₂ Twist				ist NH ₃ Umbrella			COH Bend	Asy S	vm. C-F tretch

Table S11 Assignments of vibrational modes of fluorinated Phe•H⁺

Structure	Vibrational modes (cm ⁻¹)									
IRMPD	1800-1750		1200-1090							
	1776	14	1452 1397							
3CN-Phe-H ⁺	C=O Stretch, NH ₂ Scissor	NH ₃ Umbrella COH Bend W				end, C Waş	CH & NH ₂ g	COH Bend		
IRMPD	1810-1700			1510-1	270			1270-1040		
	1776	1454		1397			1294	1166		
$3CF_3$ -Phe-H ⁺	C=O Stretch, NH ₂ Scissor	NH ₃ Umbrella, CH ₂ Scissor	a, COH Bend, CH & NH ₂ Wag			OH Bend, CH & NH2 Ring Stretch COF Wag Ring Stretch COF		COH Bend		
IRMPD	1790 - 1700	1630-1500	1630-1500 1500-1270							
	1758	1602 155	2 14	439	1383		1331	1154		
4NO ₂ -Phe-H ⁺	C=O Stretch, NH ₂ Scissor	Asymmetrica N=O Stretch Ring Stretch	al N Uml C Sc	NH ₃ Umbrella, CH ₂ Scissor		1	Symmetrical N=O Stretch	COH Bend		
IRMPD	1860 - 1700	1670-1000								
	1770	1521		144	445		445		1278	1166
$3,4(MeO)_2$ -Phe-H ⁺	-H ⁺ C=O Stretch, NH ₂ Scissor Ring H Wag NH ₃ & CH ₃ Umbrella		Ring Stretch		COH Bend					

Table S12 Assignments of vibrational modes of protonated Phe derivatives (different EWGs/EDGs)

Phe Derivatives	-ΔH (kJ/mol)	-ΔG(kJ/mol)
3,4(MeO) ₂	951.13	915.31
Phe	926.02	896.32
2,5F ₂	916.28	883.08
3F	914.74	884.65
4F	914.71	884.87
3CF ₃	908.84	875.64
3,5F ₂	903.98	873.96
3CN	897.21	867.76
$4NO_2$	891.75	862.61
F ₅	890.37	854.93

Table S13 The calculated proton affinities and gas phase basicities of Phe and its derivatives at the B3LYP/6-311++G(d,p) level of theory.