Supporting Information

Enhanced Ionic Mobility in NanoPorous Silica by Controlled Surface Interactions

Mounesha N. Garaga,^a Luis Aguilera,^b Negin Yaghini,^a Aleksandar Matic,^b Michael Persson,^c Anna Martinelli^{a,*}

^aChalmers University of Technology, Department of Chemistry and Chemical Engineering, Kemigården 4, 41296 Gothenburg, Sweden

^bChalmers University of Technology, Department of Physics, Origovägen 6B, 41296 Gothenburg, Sweden ^cAkzoNobel Pulp and Performance Chemicals, Bohus, Sweden

**Corresponding author: anna.martinelli@chalmers.se*

Figure S1. 1D ¹³C and ¹H NMR spectra of diethyl-methyl-ammonium methanesulfonate (DEMAOMs) and 1-methyl-3-hexyl imidazolium bis(trifluoro methanesulfonate) (C₆C₁ImTFSI).

Table S1. Silica gel composition for both functionalized and untreated silica with the ionic liquidsDEMAOMs and C_6C_1 ImTFSI.

Pore filling factor (%)	Volume fraction of silica ^a (ΦSiO_2)	Ionic liquid (mL)
25	0.682	0.211
50	0.518	0.422
75	0.417	0.633
100	0.350	0.844
125	0.301	1.055
150	0.264	1.266
200	0.212	1.688

^{*a*}The amount of nanoporous silica used to prepare each silica gel is 1 gram

Volume fraction silica (Φ SiO2) (further details on these calculations can be found in reference [20])

$$\Phi \text{SiO}_2 = \frac{V_{SiO_2}}{V_{SiO_2} + V_{IL}}$$

 $\rho_{SiO2} = 2.2$ g/cm³, $\rho_{C6CIImTFSI} = 1.372$ g/cm³ and $\rho_{DEMAOMs+H2O} = 1.096$ g/cm³

Silica particles contain 65% of free space, and 35% of dense silica matrix. V_{max}

 $V_{SiO_2 = 35}$, $V_{IL =>}$ $V_{Free space} = x$ 65, where x = % of pore filling Complete filling of ionic liquids in silica accounts to the 100% pore filling.

$$i.e. \Phi SiO_2 = \frac{35}{35 + \frac{x}{100}65}$$

e.g. x = 200% pore filling
$$\frac{35}{35 + \frac{200}{100}65} = 0.21$$

Figure S2. Thermogravimetric analysis showing the mass loss phenomena in gels containing the ionic liquid (at 100% pore filling) diethyl-methyl-ammonium methanesulfonate (DEMAOMs) and 1-methyl-3-hexylimidazolium bis(trifluoromethanesulfonate) (C_6C_1 ImTFSI) for untreated (red) and functionalized (black) silica.

Figure S3. 2D ¹³C {¹H} HETCOR NMR spectra of functionalized nanoporous silica gels with (a)
C₆C₁ImTFSI and (b) DEMAOMs ionic liquids collected at a magnetic field of 14.1 T at a MAS rate of 10 kHz. The ¹H MAS (and ¹H projection) and ¹³C {¹H} CP-MAS (and ¹³C projection) NMR spectra are shown on left and top of the 2D spectrum, respectively.

Figure S4. Raman shift of the S–O stretching mode in the OMs anion as a function of pore filling factor for gels based on untreated (red) and functionalized (black) silica.

Figure S5. T_g values recorded for the ionic liquid C₆C₁ImTFSI in untreated (red diamonds) and functionalized (black circles) gels.