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Structures

Figure S1 shows the reference structures used for the mode decomposition where each atom

is labeled.

Figure S1: Reference structures of (a) glycine-only and (b) valine-only atom labels.

Radial and Angular Distribution Functions

The radial distribution functions (RDFs) of valine in water show the radial arrangement of

water molecules around the protonated amino and deprotonated carboxyl groups. Akin to

the results shown for glycine in water in the main text the original AMOEBA parametriza-

tion leads to an outward shift compared to AIMD also in case of valine which is largely

corrected when using the modified AMOEBA model that is shown here; note that the corre-

sponding AIMD RDFs of glycine are overall in reasonable accord with experimental data as

demonstrated in the main text and thus are expected to serve as benchmarks also for valine.

Angular distribution functions for glycine and valine are shown in Fig. S3 and Fig. S4,

respectively. The angles as obtained from the original AMOEBA model nicely match for

both glycine and valine those of the corresponding angles obtained from AIMD so that no

optimization was carried out in the modified model.
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Figure S2: Radial distribution functions between the protonated amino and deprotonated
carboxyl groups of valine in water with respect to the water molecules.
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Figure S3: Angular distribution functions for glycine. (a) H4-C1-H5, (b) N1-C1-H4/H5, (c)
H4/H5-C1-C2, (d) N1-C1-C2.
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Figure S4: Angular distribution functions for Valine. (a) O1/O2-C2-C1, (b) C4-C3-C5, (c)
N1-C1-C3, (d) C2-C1-C3, (e) H4-C1-C3, (f) N1-C1-H4, (g) H4-C1-C2, (h) N1-C1-C2.

The dihedral distribution functions are shown in Fig. S5 for glycine and Fig. S6 for valine.

Overall the dihedral angles show similar tendencies to the ones from AIMD but are generally

too stiff in AMOEBA.
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Figure S5: Dihedral distribution functions for glycine. (a) HCNH, (b) NCCO, (c) HCCO,
(d) HNCC.
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Figure S6: Dihedral distribution functions for valine. (a) amide H and water H, (b) carboxyl
O and water H, (c) amide H and water O, (d) carboxyl O and water O.
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Comparison of Mode Displacement Patterns derived from

Decomposing VDOS versus IR Spectra

Decomposing vibrational spectra in terms of modes is well–known to be not unique except

in the fully (i.e. both mechanical and electrical) harmonic limit. In order to explicitly assess

our particular approach, we compute and decompose the vibrational (or phonon) density of

states (VDOS) using the identical approach as used to dissect the IR/THz spectra, but apply

it to the
√
mass–weighted velocity cross-correlation matrixS1,S2 of all atoms or nuclei (instead

of using the charge current, i.e. dipole velocity cross-correlation matrix, involving not only

the nuclei but also the electrons as represented by the centers of their Wannier functions,

see main text). Thus, the VDOS exclusively considers the correlated motion of the atoms

(in case of force field simulations or nuclei in AIMD) in three-dimensional space. It is noted

in passing that the VDOS is experimentally accessible to inelastic neutron scattering but

lacks, of course, the lineshape of IR/THz spectra, which results from dipolar fluctuations

that depend on the electrons in the first place and thus on polarization and charge trans-

fer contributions. The corresponding frequency-dependent weighting of IR/THz spectra is

particularly important in the low-frequency regime where, for instance, the prominent water

network mode at roughly 200 cm−1 is simply absent in any VDOS–based spectrumS1,S2.

We applied our full decomposition procedure to severall representative classes of modes,

namely to (i) essentially intramolecular motion (using the “NCCO open/close mode”, see

Fig. S7), (ii) largely intermolecular hydrogen bond stretching and hydrogen bond bending

motion (using the HB-stretch I and HB-bend II modes, respectively, in Figs. S8 and S9), as

well as to (iii) intimately coupled inter/intramolecular motion (using the “C-C twist + HB

stretch” mode, see Fig. S10) in order to extract VDOS–based modes in direct comparison to

IR–based modes both obtained using SSC(+) analysis. Moreover, we compute the respective

AMOEBA as well as AIMD modes which allows for comparison also at the level of the

interaction model. The detailed comparisons compiled in Figs. S7–S10 make clear that the
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Figure S7: Glycine VDOS mode displacement patterns of the NCCO open/close mode for
a) AMOEBA and b) AIMD. The corresponding IR modes are shown for c) AMOEBA and
d) AIMD.

Figure S8: Glycine VDOS mode displacement patterns of the HB-stretch I mode for a)
AMOEBA and b) AIMD. The corresponding IR modes are shown for c) AMOEBA and d)
AIMD.
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atomic displacement patterns in real–space as obtained from the IR/THz decomposition

compare well to those obtained from the VDOS for all classes of modes, in particular also

including those modes where intermolecular solute-solvent couplings are greatly contributing

to the motion or even dominate. Moreover, the excellent match between the AMOEBA and

AIMD mode displacement patterns support the approach devised in the main text in order

to compute the effective molecular dipoles in the former case, which provide an approximate

lineshape weighting of IR/THz spectra within the AMOEBA approach according to Eqs. (18)

and (19).

Figure S9: Glycine VDOS mode displacement patterns of the HB-bend II mode for a)
AMOEBA and b) AIMD. The corresponding IR modes are shown for c) AMOEBA and d)
AIMD.
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Figure S10: Glycine VDOS mode displacement patterns of the C-C twist + HB stretch mode
for a) AMOEBA and b) AIMD. The corresponding IR modes are shown for c) AMOEBA
and d) AIMD.
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Modes of Glycine According to SSC(+) Analysis
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Figure S11: THz mode intensities of glycine within the supermolecular solvation complex at
the amino group (SSC(+)) computed via AIMD solvated by 30 water molecules. The top
panel shows high THz intensities, the bottom shows low intensities.
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Figure S12: THz mode intensities of glycine within the supermolecular solvation complex at
the amino group (SSC(+)) computed via AMOEBA solvated by 30 water molecules. The
top panel shows high THz intensities, the bottom shows low intensities.
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Figure S13: THz mode intensities of glycine within the supermolecular solvation complex at
the amino group (SSC(+)) computed via AMOEBA solvated by 256 water molecules. The
top panel shows high THz intensities, the bottom shows low intensities.
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Modes of Valine According to SSC(+) Analysis

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0  50  100  150  200  250  300  350  400

α
(ω

))
 /
 c

m
-1

Frequency / cm
-1

AMOEBA

HB stretch I
HB bend I
Calpha out-of-plane 
HB bend X1
HB bend U2
HB bend X 
HB bend X3 
cage libration I 
cage rattling 
cage rattling 
cage rattling 

 0

 50

 100

 150

 200

 250

 300

 350

         

α
(ω

))
 /
 c

m
-1

AMOEBA

NCCO 
NCCC I 
NCCC II 
COO-CCC 
HB stretch + C-C twist
HB stretch II 
HB bend U2 
cage libration II 
R libration II 

Figure S14: THz mode intensities of valine within the supermolecular solvation complex at
the amino group (SSC(+)) computed via AIMD solvated by 60 water molecules. The top
panel shows high THz intensities, the bottom shows low intensities.
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Figure S15: THz mode intensities of valine within the supermolecular solvation complex at
the amino group (SSC(+)) computed via AMOEBA solvated by 60 water molecules. The
top panel shows high THz intensities, the bottom shows low intensities.
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Figure S16: THz mode intensities of valine within the supermolecular solvation complex at
the amino group (SSC(+)) computed via AMOEBA solvated by 256 water molecules. The
top panel shows high THz intensities, the bottom shows low intensities.
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Mode Displacement Vectors of Glycine

AIMD: NCCO 304 cm−1

AMOEBA: NCCO 305 cm−1
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AIMD: HB-stretch-+-CC-Twist 247 cm−1

AMOEBA: HB-stretch-+-CCtwist 236 cm−1
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AIMD: HB-stretch-II 218 cm−1

AMOEBA: HB-stretch-II 146 cm−1
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AIMD: HB-stretch-I 210 cm−1

AMOEBA: HB-stretch-I 214 cm−1
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AIMD: C-alpha-oop 125 cm−1

AMOEBA: C-alpha-oop 135 cm−1
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AIMD: HB-bend-I 102 cm−1

AMOEBA: HB-bend-I 92 cm−1
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AIMD: cage-libration-II 90 cm−1

AMOEBA: cage-libration-II 71 cm−1
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AIMD: HB-bend-II 90 cm−1

AMOEBA: HB-bend-II 68 cm−1
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AIMD: cage-libration-III 89 cm−1

AMOEBA: cage-libration-III 84 cm−1
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AIMD: cage-libration-I 82 cm−1

AMOEBA: cage-libration-I 68 cm−1
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AIMD: cage-rattling-II 73 cm−1

AMOEBA: cage-rattling-II 63 cm−1
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AIMD: cage-rattling-III 64 cm−1

AMOEBA: cage-rattling-III 61 cm−1
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AIMD: cage-rattling-I 62 cm−1

AMOEBA: cage-rattling-I 50 cm−1
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Mode Displacement Vectors of Valine

AIMD: NCCO 349

AMOEBA: NCCO 352
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AIMD: NCCC-I 317

AMOEBA: NCCC-I 335
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AIMD: NCCC-II 280

AMOEBA: NCCC-II 321
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AIMD: COO-CCC 197

AMOEBA: COO-CCC 236
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AIMD: CC-Twist-+-HB-Twist 189

AMOEBA: CC-Twist-+-HB-stretch 196
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AIMD: HB-stretch-II 148

AMOEBA: HB-stretch-II 164
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AIMD: HB-stretch-I 112
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AIMD: HB-bend-I 101

AMOEBA: HB-bend-I 86

S36



AIMD: Ca-oop-deformed 98

AMOEBA: Caoop 89

S37



AIMD: HB-bend-X1 94
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AIMD: HB-bend-U2 90
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AIMD: HB-bend-U1 88
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AIMD: HB-bend-X 87
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AIMD: R-libration-I 85
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AIMD: cage-rattling-II 56
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Modes of Glycine in the SSC(-)
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Figure S51: THz mode intensities of glycine within the supermolecular solvation complex at
the carboxylate group (SSC(-)) computed via AMOEBA (top) and AIMD (bottom) solvated
by 30 water molecules. The top panel shows high THz intensities, the bottom shows low
intensities.
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Modes of Valine in the SSC(-)
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Figure S52: THz mode intensities of valine within the supermolecular solvation complex at
the carboxylate group (SSC(-)) computed via AMOEBA (top) and AIMD (bottom) solvated
by 60 water molecules. The top panel shows high THz intensities, the bottom shows low
intensities.
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