## **Electronic Supplementary Information**

# Mechanism of the Large Second Harmonic Generation Enhancement Activated by the Zn<sup>2+</sup> Substitution

Miriding Mutailipu, <sup>a,b</sup> Zhi Li, <sup>a</sup> Min Zhang, <sup>\*a</sup> Dianwei Hou, <sup>a,b</sup>

Zhihua Yang, a Bingbing Zhang, Hongping Wu and Shilie Pan a

<sup>a</sup> Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences; Xinjiang Key

Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road,

Urumqi 830011, China

<sup>b</sup>University of the Chinese Academy of Sciences, Beijing 100049, China

\*Corresponding authors, E-mails: zhangmin@ms.xjb.ac.cn; slpan@ms.xjb.ac.cn

#### **1. Results and Discussion**

#### 1.1. Synthesis and thermal behavior

The polycrystalline samples of Sr<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub> and Sr<sub>2</sub>MgSi<sub>2</sub>O<sub>7</sub> for the measurement of thermal behavior were characterized by powder XRD (Fig. S3), which illustrates that those samples are pure phase without impurity. The TG and DSC curves of those samples are shown in Fig. S4. It is obvious that there are no any endothermic peakson each DSC curve and no weight loss on their TG curves within the region from 40 to 1400 °C, which shows that the melting temperature of both compounds are higher than 1400°C. The results guide us to use the flux method to obtain the single crystals.

#### **1.2.** Description of the structure

Single-crystal X-ray diffraction data show that  $Sr_2ZnSi_2O_7$  and  $Sr_2MgSi_2O_7$  crystallize in a tetragonal crystal system with a noncentrosymmetric space group of P  $^42_1m$  (No. 113). Since  $Sr_2ZnSi_2O_7$  and  $Sr_2MgSi_2O_7$  are isostructural, only the structure of  $Sr_2ZnSi_2O_7$  will be discussed in details as a representation.

In the asymmetric unit of  $Sr_2ZnSi_2O_7$ , Sr, Zn, Si, O each occupies one, one, one and three crystallographically unique positions, respectively. The structure of  $Sr_2ZnSi_2O_7$ is shown in Fig. S1, which can be seen as the structure consisting of  $[ZnSi_2O_7]_{\infty}$  layers with the Sr atoms locating between these layers to balance the charge and holding the layers together through coordination with the O atoms.

In their structures, the Si and Zn (or Mg) atoms are four-coordinated to form AO<sub>4</sub> (A= Si, Zn and Mg) tetrahedra. The two SiO<sub>4</sub> tetrahedra are further connected by sharing an O atom to form the Si<sub>2</sub>O<sub>7</sub> dimers (Fig. S1a). The ZnO<sub>4</sub> tetrahedra are linked with the Si<sub>2</sub>O<sub>7</sub> dimers by vertex-sharing to form  ${}^{2}_{\infty}$ [ZnSi<sub>2</sub>O<sub>7</sub>] layers (Fig. S1b) and stacked in the direction of *c* axis forming the final structures(Fig. S1c). In the SiO<sub>4</sub> tetrahedron, the bond distances range from 1.569(7) to 1.650(6) Å for Si-O, while all bonds of Zn-O in ZnO<sub>4</sub> tetrahedra are in the same distances of 1.925(5) Å. The bond valence calculations (BVSs) (Sr = 1.958, Zn = 2.201, O = 1.720 - 2.352, Si = 4.207) for Sr<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub> show that the Sr, Zn, Si and O atoms are in oxidation states of +2, +2 +4 and -2, respectively, which are in agreement with reported compounds previously.

Moreover, two ZnO<sub>4</sub> tetrahedra and three SiO<sub>4</sub> groups are connected to construct a tunnel along *c* axis with the diameters of 3.8 Å (Fig. S1d), then eight-coordinated SrO<sub>8</sub> hexahedra are located in the tunnels.

#### 1.3. Structure comparison among Sr<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub> with α- and β-Ba<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub>.

It is worth comparing the structure of  $Sr_2ZnSi_2O_7$  with those of  $\alpha$ - and  $\beta$ -Ba2ZnSi2O7.1,2 There are some similarities in structure among them, all of those compounds contain topologically identical <sup>2</sup><sub>∞</sub>[ZnSi<sub>2</sub>O<sub>7</sub>] layers (Figs. S1c, S2a and S2c) and Sr( or Ba) atoms locating between these layers to constitute the network structures. There are also some differences among three crystal structures with same molecular formula, and these differences are characterized as the following points: firstly, Si<sub>2</sub>O<sub>7</sub> and ZnO<sub>4</sub> as the fundamental building blocks (FBBs) of  $[ZnSi_2O_7]_{\infty}$ layers, are alternately parallelly arranged to form a layer for  $\alpha$  and  $\beta$ -Ba<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub> (Figs. S2a and S2c). But for Sr<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub>, the adjacent Si<sub>2</sub>O<sub>7</sub> groups are perpendicular to each other in a regular manner (Fig. S2c). Secondly, the tunnels composed of two ZnO<sub>4</sub> unites and two Si<sub>2</sub>O<sub>7</sub> groups adopt different arrangements, which is shown in Fig. S2c (A for  $Sr_2ZnSi_2O_7$ , B for  $\alpha$ -Ba<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub>, C for  $\beta$ -Ba<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub>) and there are one, one and two Sr (or Ba) atoms located in the tunnels for three compounds, respectively. Thirdly, there is no shared-oxygen O atom between two ZnO<sub>4</sub> units in chains I and II for  $Sr_2ZnSi_2O_7$  and  $\alpha$ -Ba<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub>, respectively. While for chain III in  $\beta$ -Ba<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub>, there is single atom between two ZnO<sub>4</sub> groups(Fig. S2d), which may lead link more closely in  $\beta$ -Ba<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub> than another.

#### **1.4 Electronic structure**

Electronic states near the band gap are important for the optical properties, so the electronic structure was analyzed. The density of states (DOS) and the partial density of states (PDOS) of  $Sr_2MSi_2O_7$  (M = Zn and Mg) are shown in Fig. S8. The upper region of the valence band (VB) is mainly occupied by the O 2p orbitals for  $Sr_2MSi_2O_7$  (M = Zn and Mg). The bottom of the conduction band (CB) mainly consists of the Zn 4s orbitals for  $Sr_2ZnSi_2O_7$  and Sr 5s for  $Sr_2MgSi_2O_7$ . Hence, for  $Sr_2ZnSi_2O_7$ , the band gap is determined by the O and Zn atoms, and the band gap of

 $Sr_2MgSi_2O_7$  is dependent on the O and Sr atoms. In contrast to the 3*s* orbitals of Mg, the 4*s* orbitals of Zn is more spatially extended. The spatially extended 4*s* orbitals will enhance the *sp* hybridization between Zn and O. This enhanced *sp* hybridization has two sequences: (1) it will enhance the bandwidth of 4*s* orbitals and reduce the band gap; (2) it will enhance the inter-band dipole and inter-band transition induced by laser light.



**Fig. S1.** Structure of Sr<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub>. (a) The ZnO<sub>4</sub> tetrahedra and Si<sub>2</sub>O<sub>7</sub> dimers. (b) The  ${}^{2}_{\infty}$ [ZnSi<sub>2</sub>O<sub>7</sub>] layer in the structure viewed along the *c* axis.(c) Crystal structure of Sr<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub> viewed in the direction of *b* axis. (c) The  ${}^{2}_{\infty}$ [ZnSi<sub>2</sub>O<sub>7</sub>] layer in the structure viewed along the *c* axis. (d) The tunnel in Sr<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub>. The ZnO<sub>4</sub> and SiO<sub>4</sub> groups are shown in turquoise and rose, respectively.



**Fig. S2.** The  ${}^{2}_{\infty}$ [ZnSi<sub>2</sub>O<sub>7</sub>] layers in  $\alpha$ -Ba<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub> viewed along the *b* axis (a) and in  $\beta$ -Ba<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub> viewed along the *c* axis (b). The tunnels of three compound (c). chains I , II and III for three compound (d). The ZnO<sub>4</sub> and SiO<sub>4</sub> groups are shown in turquoise and rose, respectively.



Fig. S3. Experimental and calculated XRD patterns of  $Sr_2ZnSi_2O_7$  (a) and  $Sr_2MgSi_2O_7$  (b).



Fig. S4. The UV-vis-NIR diffuse reflectance spectra of Sr<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub> and Sr<sub>2</sub>MgSi<sub>2</sub>O<sub>7</sub>.



**Fig. S5.** Calculated band structures of  $Sr_2ZnSi_2O_7$  (a) and  $Sr_2MgSi_2O_7$ (b). The weight of 3s-orbitals of Si is in red, and the weight of 3p-orbitals of O is in blue.



**Fig. S6.** Calculated band structures of  $Sr_2ZnSi_2O_7$  (a) and  $Sr_2MgSi_2O_7$ (b). The weight of 3s-orbitals of Sr is in red, and the weight of 3p-orbitals of O is in blue.



Fig. S7. The TG and DSC curves of Sr<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub> and Sr<sub>2</sub>MgSi<sub>2</sub>O<sub>7</sub>.



Fig. S8. The density of states and the partial density of states of  $Sr_2ZnSi_2O_7$  (a) and  $Sr_2MgSi_2O_7$  (b).

| empirical formula                                   | $Sr_2ZnSi_2O_7$                  | Sr <sub>2</sub> MgSi <sub>2</sub> O <sub>7</sub> <sup>3</sup> |
|-----------------------------------------------------|----------------------------------|---------------------------------------------------------------|
| Formula weight                                      | 408.79                           | 367.72                                                        |
| Crystal system                                      | Tetragonal                       | Tetragonal                                                    |
| space group                                         | $P^{\bar{4}}2_1m$ (No. 113)      | $P^{\bar{4}}2_1m$ (No. 113)                                   |
| <i>a</i> (Å)                                        | 7.956 (2)                        | 7.9957(10)                                                    |
| b (Å)                                               | 7.956 (2)                        | 7.9954(10)                                                    |
| <i>c</i> (Å)                                        | 5.136(3)                         | 5.1521(9)                                                     |
| Z                                                   | 2                                | 2                                                             |
| volume (Å <sup>3</sup> )                            | 325.1 (2)                        | 329.54(8)                                                     |
| density (calcd) (g/cm <sup>3</sup> )                | 4.176                            | 3.707                                                         |
| abs coeff (mm <sup>-1</sup> )                       | 20.366                           | -                                                             |
| F(000)                                              | 380                              | 344                                                           |
| cryst size (mm <sup>3</sup> )                       | 0.19 ×0.15 ×0.10                 | $0.08 \times 0.07 \times 0.06$                                |
| the range for data collection (deg)                 | 3.62 to 27.46                    | -                                                             |
| index ranges                                        | $-10 \le h \le 10, -4 \le k \le$ |                                                               |
| C                                                   | $10, -6 \le l \le 6$             | -                                                             |
| reflns collected/unique                             | 1978 / 416                       |                                                               |
| -                                                   | [R(int) = 0.0259]                | -                                                             |
| completeness to $\theta = 27.46^{\circ}$            | 100 %                            | -                                                             |
| data/restraints/param                               | 416 / 0 / 35                     | -                                                             |
| GOF on $F^2$                                        | 1.192                            | -                                                             |
| final <i>R</i> indices $[F_0^2 > 2\sigma(F_0^2)]^a$ | R1 = 0.0277, wR2 =               |                                                               |
|                                                     | 0.0715                           | -                                                             |
| <i>R</i> indices (all data) $^{a}$                  | R1 = 0.0297, wR2 =               |                                                               |
|                                                     | 0.0727                           | -                                                             |
| extinction coeff                                    | 0.010(3)                         | -                                                             |
| largest diff peak and hole<br>(e/Å <sup>3</sup> )   | 0.637 and -1.288                 | -                                                             |
|                                                     |                                  |                                                               |

Table S1. Crystallographic data for  $Sr_2ZnSi_2O_7$  and  $Sr_2MgSi_2O_7$ .<sup>3</sup>

<sup>*a*</sup>  $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$  and  $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w F_0^4]^{1/2}$  for  $F_0^2 > 2\sigma (F_0^2)$  and  $w^{-1} = \sigma^2 (F_0^2) + (0.0254P)^2 + 0.49P$  where  $P = (F_0^2 + 2F_c^2)/3$ .

| Atoms             | x         | У         | Z           | $U_{eq}(Å^2)$ | BVS   |
|-------------------|-----------|-----------|-------------|---------------|-------|
| $Sr_2ZnSi_2O_7$   |           |           |             |               |       |
| Sr                | 0.3327(1) | 0.8327(1) | 0.0069(2)   | 0.012(1)      | 1.958 |
| Zn                | 0.0000    | 1.0000    | 0.5000      | 0.012(1)      | 2.201 |
| Si                | 0.1365(3) | 0.6365(3) | 0.4498(6)   | 0.026(1)      | 4.207 |
| 01                | 0.5000    | 1.0000    | -0.3475(19) | 0.018(2)      | 2.352 |
| 02                | 0.1385(6) | 0.6385(6) | -0.2446(12) | 0.017(2)      | 1.720 |
| 03                | 0.0755(7) | 0.8096(7) | 0.3005(11)  | 0.024(1)      | 2.025 |
| $Sr_2MgSi_2O_7^2$ |           |           |             |               |       |
| Sr                | 0.3345(5) | 0.1655(5) | 0.5077(1)   | -             | 1.958 |
| Mg                | 0.0000    | 0.0000    | 0.0000      | -             | 2.041 |
| Si                | 0.1387(2) | 0.3613(2) | 0.9438(4)   | -             | 4.260 |
| 01                | 0.5000    | 0.0000    | 0.1603(15)  | -             | 2.184 |
| 02                | 0.1396(6) | 0.3604(6) | 0.2528(10)  | -             | 1.509 |
| 03                | 0.0793(5) | 0.1915(5) | 0.8034(7)   | -             | 1.950 |
| Sr                | 0.3345(5) | 0.1655(5) | 0.5077(1)   | -             | 1.958 |

 Table S2. Atomic coordinates equivalent isotropic displacement parameters and bond

 valence Sum (BVS) for  $Sr_2ZnSi_2O_7^a$  and  $Sr_2MgSi_2O_7^{.3}$ 

| Selected bond                                    | Bond lengths | Selected bond             | Bond lengths |  |  |
|--------------------------------------------------|--------------|---------------------------|--------------|--|--|
| Sr <sub>2</sub> ZnSi <sub>2</sub> O <sub>7</sub> |              |                           |              |  |  |
| Sr(1)-O(2)                                       | 2.538(7)     | Zn(1)-O(3)#7              | 1.925(5)     |  |  |
| Sr(1)-O(3)                                       | 2.548(5)     | Zn(1)-O(3)                | 1.925(5)     |  |  |
| $Sr(1)-O(3)^{\#1}$                               | 2.548(5)     | $Zn(1)-O(3)^{\#8}$        | 1.925(5)     |  |  |
| Sr(1)-O(1)                                       | 2.619(7)     | Zn(1)-O(3) <sup>#9</sup>  | 1.925(5)     |  |  |
| $Sr(1)-O(2)^{\#2}$                               | 2.732(5)     | Si(1)-O(2) <sup>#11</sup> | 1.569(7)     |  |  |
| Sr(1)-O(2) <sup>#3</sup>                         | 2.732(5)     | Si(1)-O(1) <sup>#10</sup> | 1.623(5)     |  |  |
| Sr(1)-O(3) <sup>#2</sup>                         | 2.740(6)     | Si(1)-O(3)                | 1.650(6)     |  |  |
| Sr(1)-O(3)#4                                     | 2.740(6)     | Si(1)-O(3) <sup>#1</sup>  | 1.650(6)     |  |  |
| $Sr_2MgSi_2O_7{}^3$                              |              |                           |              |  |  |
| Sr(1)-O(3)                                       | 2.538        | Mg(1)-O(3)                | 1.942        |  |  |
| Sr(1)-O(3)                                       | 2.548        | Mg(1)-O(3)                | 1.942        |  |  |
| Sr(1)-O(2)                                       | 2.548        | Mg(1)-O(3)                | 1.942        |  |  |
| Sr(1)-O(1)                                       | 2.619        | Mg(1)-O(3)                | 1.942        |  |  |
| Sr(1)-O(2)                                       | 2.732        | Si(1)-O(2)                | 1.592        |  |  |
| Sr(1)-O(2)                                       | 2.732        | Si(1)-O(3)                | 1.610        |  |  |
| Sr(1)-O(3)                                       | 2.740        | Si(1)-O(3)                | 1.610        |  |  |
| Sr(1)-O(3)                                       | 2.740        | Si(1)-O(1)                | 1.658        |  |  |

Table S3. Selected bond lengths (Å) for  $Sr_2ZnSi_2O_7$  and  $Sr_2MgSi_2O_7$ .<sup>3</sup>

| Compounds                                        | Calculated (pm/V) |
|--------------------------------------------------|-------------------|
| Sr <sub>2</sub> ZnSi <sub>2</sub> O <sub>7</sub> | 0.29              |
| Sr <sub>2</sub> MgSi <sub>2</sub> O <sub>7</sub> | 0.07              |

Table S4. Calculated SHG effect of  $Sr_2ZnSi_2O_7$  and  $Sr_2MgSi_2O_7$ 

Table S5. Calculated band-resolved results of Sr<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub> and Sr<sub>2</sub>MgSi<sub>2</sub>O<sub>7</sub>

| Compounds                                        | VE process | VH process |
|--------------------------------------------------|------------|------------|
| Sr <sub>2</sub> ZnSi <sub>2</sub> O <sub>7</sub> | 98.02%     | 71%        |
| Sr <sub>2</sub> MgSi <sub>2</sub> O <sub>7</sub> | 1.98%      | 29%        |

### **References and Notes**

- (1) Kaiser, J. W.; Jeitschko, W.; Krist, Z. New. Cryst. St. 2002, 217, 25.
- (2) Lin, J. H.; Lu, G. X.; Du, J.; Su, M. Z.; Loong, C. K.; Richardson, J. W. J. Phys. Chem. Sol. 1999, 60, 975.
- (3) Kimata, M. Z. Kristallogr. 1983, 163, 295.