Supporting Information

Enhanced Selective Oxidation of h-BN Nanosheet through Substrate Mediated Localized Charge Effect

Keke Mao, ^{1,2} *Xiaojun Wu*, ^{1,*} *and Jinlong Yang* ¹

 ¹ CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Sciences, and CAS Center for Excellences in Nanosciences Hefei National Laboratory of Physical Sciences at the Microscale
 Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
 ² School of Energy and Environment Science, Anhui University of Technology, Maanshan, Anhui 243032, China

*Corresponding author. E-mail: xjwu@ustc.edu.cn;

Figure S1 The density of states (DOS) of (a) pure h-BN monolayer, (b) h-BN/Ni(111), (c) h-BN/Cu(111), and (d) h-BN/Co(001) projected on p_z orbitals of B and N, and d orbitals of metals are plotted. The Fermi energy level is set as zero.

Figure S2 Top and side views of the optimized structures of (a) h-BN/Ni(111) and (b) h-BN/Cu(111) with boron atoms occupying the hcp site of substrate.

Figure S3 The top and side views of the optimized structures of *h*-BN bilayer on (a) Ni(111), (b) Cu(111), (c)Co(001) substrates, and *h*-BN triple layer on (d) Cu(111) substrate.

Figure S4. Top and side views of O_2 adsorbed structure on *h*-BN bilayer supported by (a) Ni(111), (b) Cu(111), (c) Co(001), and *h*-BN triple layer supported by (d) Cu(111) substrate.

Figure S5. The calculated MEP for O_2 chemisorbed on *h*-BN bilayer supported by (a) Cu(111) and (b) Ni(111) substrates, respectively.

Figure S6. The total energy versus optimization steps for O_2 molecule on freestanding *h*-BN monolayer with 2.5% biaxial strain. The initial structure is taken from the O_2 adsorbed structure on h-BN/Cu(111) species

Figure S7. (a) The energy profile versus optimization step for O_2 adsorption on *h*-BN/Cu₁₃, indicating that the adsorption process is spontaneous. (b) The calculated MEP for the O_2 adsorption on *h*-BN/Ni₁₃.

TABLE S1 The adsorption energy (E_{ads}) , local magnetic moment on O atom (*M*), the O-O bond lengths (d_{O-O}), and charge transfer from *h*-BN sheet to O₂ specie (*C*) are summarized for *bi-h*-BN/Cu(111), *bi-h*-BN/Ni(111), *bi-h*-BN/Co(001), and *tri-h*-BN/Cu(111).

	0 ₂ /bi-h-	0 ₂ /bi-h-	0 ₂ /bi-h-	O ₂ /tri-h-
	BN/Ni(111)	BN/Cu(111)	BN/Co(001)	BN/Cu(111)
E_{ads} (eV)	-0.165	-0.757	0.112	0.881
$M\left(\mu_{\mathrm{B}} ight)$	0.202	-0.079	-0.047	0.285
	0.202	-0.079	-0.050	0.285
$d_{\text{O-O}}(\text{\AA})$	1.401	1.458	1.449	1.388
<i>C</i> (e)	1.186	1.473	1.449	1.057
$ \begin{array}{c} M\left(\mu_{\rm B}\right) \\ d_{\rm O-O}\left({\rm \AA}\right) \\ C \left({\rm e}\right) \end{array} $	0.202 1.401 1.186	-0.079 1.458 1.473	-0.050 1.449 1.449	0.285 1.388 1.057

TABLE S2 The adsorbed O_2 properties on electron doped *h*-BN monolayer. The adsorption energy (E_{ads}) and O-O bond length (L(O-O)) are listed in the below table. "number *e*" indicates the number of electrons per supercell are introduced to *h*-BN monolayer.

	1 e	2 e	3 e	
E _{ads} (eV)	-0.972	-1.702	-2.568	
L ₀₋₀ (Å)	1.343	1.485	1.511	

Table S3. The adsorption energy (E_{ads} in unit of eV) and O-O bond lengths (d_{O-O} in unit of Å) for O₂ molecule adsorbed on Ni₁₃ and Cu₁₃ supported *h*-BN monolayer.

	Cu ₁₃			Ni ₁₃				
	C1	E1	E2	F1	C1	E1	E2	F1
E_{ads}	-2.028	-1.514	-1.961	-0.408	-0.886	-0.418	-0.108	01.36
$d_{\text{O-O}}$	1.441	1.414	1.441	1.266	1.427	1.404	1.327	1.242