Supporting Information for:

Introducing a closed system approach for the investigation of chemical steps involving proton and electron transfer; as illustrated by a copper-based water oxidation catalyst

J.M. de Ruiter^a, F. Buda^a

^a Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2300 RA, Leiden, The Netherlands

Table of Contents

Comparison between geometrical parameters of the metal centre of [Cu(OH) ₂]2
Investigated multiplicities and geometries of possible intermediates as calculated using ADF
Geometrical details of possible intermediates as calculated using ADF
The localisation of the spin density of the relevant supposed intermediates as calculated in ADF 4
Cumulative free energy of the two proposed mechanisms for [Cu(bpy)(OH) ₂]
The two constraints examined in the investigation of the $[Cu(OH)(O)] \rightarrow [Cu(O)(O)]$ step
The time-averaged constraint force (< λ >) as a function of the O – H distance between the oxygen of a
solvent water molecule and the H atom of the hydroxyl ligand
The time-averaged constraint force (< λ >) as a function of the O – O distance between the oxygen
atoms ligated to the copper centre
The time-averaged constraint force (< λ >) as a function of the O – O distance in the OOH ligating
group of the [$Cu(OH)(OOH)$] intermediate, as $d(O - O)$ is lengthened, with and without an added
metal ion7
The constraint force (λ) as a function of time for two different O – O distance constraints

	Cu(bpy)(O ₂ CMe) ₂	OPBE	/TZP	OPBE/	′pVQZ	B3LYF	P/TZP	B3LYP,	/pVQZ
$Cu - N_1(Å)$	2.020	2.068	2.4%	2.000	1.0%	2.097	3.8%	2.043	1.1%
$Cu - N_2$ (Å)	2.015	2.048	1.6%	2.040	1.2%	2.072	2.8%	2.047	1.6%
$Cu - O_1(Å)$	1.952	1.929	1.2%	1.924	1.4%	1.916	1.8%	1.913	2.0%
$Cu - O_2$ (Å)	1.927	1.922	0.3%	1.909	0.9%	1.915	0.6%	1.922	0.3%
$O_1 - Cu - O_2(°)$	90.5	90.7	0.2%	90.9	0.4%	93.0	2.8%	92.7	2.4%
$N_1 - Cu - N_2$ (°)	79.8	78.7	1.4%	80.2	0.5%	78.3	1.9%	79.3	0.6%
$O_1 - Cu - N_2$ (°)	172.9	170	1.7%	160.5	7.2%	172	0.5%	165.9	4.0%
$O_2 - Cu - N_1(°)$	173.0	166.6	3.7%	165.4	4.4%	167.5	3.2%	159.2	8.0%

Table S1 Comparison between geometrical parameters of the metal centre of $[Cu(OH)_2]$ as calculated with OPBE and B3LYP using two different basis sets. Percentages indicate relative error with respect to experimental data of the Cu(bpy)(O₂CMe)₂ crystal structure.¹

Table S2 Investigated multiplicities and geometries of possible intermediates as calculated using ADF. ΔE is the energy relative to the lowest energy multiplicity for that intermediate (indicated by asterisks). ΔS^2 is here defined as the difference between the exact and expected value for S^2 , which can be considered an indication of the level of spin contamination for that multiplicity.²

Intermediate	Charge	Multiplicity	∆ <i>E</i> (eV)	ΔS^2	∆ <i>E</i> (eV)	ΔS^2	Copper conformation
			B3LYP		OPBI	1	
[<i>Cu</i> (OH)₂]	0	*doublet*	0.00	0.00	0.00	0.00	planar
	0	quartet	2.85	0.02	2.48	0.01	distorted tetrahedral
[<i>Cu</i> (OH)(O)]	0	*singlet*	0.00	0.00	0.00	0.00	planar
	0	triplet	0.03	0.01	0.45	0.01	distorted tetrahedral
[<i>Cu</i> (OH)(O)] ⁻	-1	*doublet*	0.00	0.00	0.00	0.01	distorted planar
	-1	quartet	1.03	0.02	0.90	0.01	planar
[<i>Cu</i> (O)(O)]	0	*doublet*	0.00	0.01	0.00	0.00	planar
	0	quartet	1.16	0.01	1.70	0.02	distorted tetrahedral
[Cu(O)(O)]⁺	+1	singlet	0.33	0.00	0.19	0.00	planar
	+1	*triplet*	0.00	0.01	0.00	0.01	planar
[<i>Cu</i> (OH)(OOH)]	0	doublet	0.00	0.00	0.00	0.00	distorted planar
	0	*quartet*	3.30	0.02	1.90	0.01	distorted tetrahedral
[<i>Cu</i> (OH)(OO)]	0	singlet	0.76	0.00	0.21	0.89	distorted planar
	0	*triplet*	0.00	0.01	0.00	0.01	distorted planar
[<i>Cu</i> (OH)(OH ₂)]	0	singlet	unstable				H₂O dissociates
	0	*triplet*	0.00	0.01	0.00	0.00	d(Cu – OH ₂) = 2.25,
							planar

Intermediate	Charge	Multiplicity	Hirschfeld	Voronoi	Cu - 01	Cu - O2	Cu - N1	Cu - N2	0 - Cu - O	01 - 02	01 - 03
[<i>Cu</i> (OH)₂]	0	doublet	0.467	0.484	1.916	1.915	2.097	2.072	93.0	2.778	
	0	quartet	0.528	0.500	1.974	1.977	0.961	1.961	67.8	2.202	
[<i>Cu</i> (OH)(O)]	0	singlet	0.467	0.510	1.765	1.813	1.952	1.979	85.8	2.435	
	0	triplet	0.433	0.467	1.805	1.943	2.051	2.091	94.6	2.756	
[<i>Cu</i> (OH)(O)] ⁻	-1	doublet	0.295	0.380	1.844	1.964	2.101	2.114	88.9	2.669	
	-1	quartet	0.392	0.439	1.819	1.98	2.026	2.045	91.7	2.729	
[<i>Cu</i> (O)(O)]	0	doublet	0.384	0.402	1.926	1.923	2.011	2.014	44.4	1.453	
	0	quartet	0.412	0.457	1.854	1.855	2.089	2.097	95.3	2.741	
[Cu(O)(O)] ⁺	+1	singlet	0.572	0.552	1.837	1.838	1.927	1.928	44.0	1.375	
	+1	triplet	0.534	0.498	1.986	1.984	1.981	1.982	38.6	1.313	
[<i>Cu</i> (OH)(OOH)]	0	doublet	0.462	0.469	1.966	1.919	2.064	2.064	89.7	2.74	1.444
	0	quartet	0.458	0.455	2.029	1.895	1.980	1.991	93.0	2.849	1.343
[<i>Cu</i> (OH)(OO)]	0	singlet	0.434	0.429	1.999	1.900	2.047	2.051	89.8	2.751	1.307
	0	triplet	0.431	0.430	2.105	1.909	2.049	2.076	90.7	2.858	1.484
[<i>Cu</i> (OH)(OH ₂)]	0	triplet	0.520	0.507	2.253	1.895	1.971	1.965	86.8	2.861	

Table S3 Geometrical details of possible intermediates as calculated using ADF (OPBE/TZP). The atomic charge of Cu calculated using the Hirshfeld and Voronoi deformation density methods is also reported (B3LYP/TZP, using the geometry optimized with OPBE/TZP).

Figure S1 The localisation of the spin density of the relevant intermediates as calculated in ADF (B3LYP/TZP).

Figure S2 Cumulative free energy of the two proposed mechanisms for $[Cu(bpy)(OH)_2]$ ($[Cu(OH)_2]$) as compared to the ideal case for water splitting as calculated by ADF (B3LYP/TZP/COSMO).

Figure S3 The two constraints examined in the investigation of the $[Cu(OH)(O)] \rightarrow [Cu(O)(O)]$ step: (1) the distance between the oxygen of a solvent water molecule and the H atom of the hydroxyl ligand (blue line) and (2) the distance between the oxygen atoms of the two oxo ligands (red line).

Figure S4 The time-averaged constraint force $(\langle \lambda \rangle)$ as a function of the O – H distance between the oxygen of a solvent water molecule and the H atom of the hydroxyl ligand (blue line in Figure S3). The black square indicates $\langle \lambda \rangle$ for the initial [Cu(OH)(O)] intermediate as calculated in the closed system approach. The initial [Cu(OH)(O)] intermediate accepts a proton to form the [Cu(OH)(OH)] intermediate (blue triangle) in order to relieve λ . The red circles show the process for the ionised intermediate ([Cu(OH)(O)]⁺ + Mn²⁺). The proton does not dissociate from the OH ligand , even when an electron has been removed: see the high value of $\langle \lambda \rangle$ corresponding to a distance of 1.0 Å where we are forcing the H₃O⁺ formation. After a further 1.21 ps of dynamics a proton shuttle occurs in which a proton is accepted by the other oxo group, thus leading back to the initial complex with a very small $\langle \lambda \rangle$ (as shown by a grey arrow). The [Cu(OH)(O)] \rightarrow [Cu(O)(O)] step would therefore be very unlikely via this pathway.

Figure S5 The time-averaged constraint force ($\langle \lambda \rangle$) as a function of the O – O distance between the oxygen atoms ligated to the copper centre (red line in Figure S3). The black square indicates $\langle \lambda \rangle$ for the initial [Cu(OH)(O)] intermediate as calculated in the closed system approach. This intermediate again accepts a proton after 90 fs to form the [Cu(OH)(OH]] intermediate (blue triangles, indicated with grey arrow). It should be noted that the values for $\langle \lambda \rangle$ are significantly higher than those obtained in Figure S4. $\langle \lambda \rangle$ for the ionised intermediate ([Cu(OH)(O)]⁺ + Mn²⁺) is again indicated by red circles. By thermodynamic integration along this reaction coordinate, we obtain a prohibitively high free energy change. The [Cu(OH)(O)] \rightarrow [Cu(O)(O)] step would therefore be highly unlikely via this pathway. *NB.* For the [Cu(OH)(O)]⁰ + Mn³⁺ system, the average O – O bond length *before* enforcing any constraints is 2.36 Å, while for [Cu(OH)(O)]⁺ + Mn²⁺ this is 2.39 Å.

Figure S6 The time-averaged constraint force ($\langle \lambda \rangle$) as a function of the O – O distance in the OOH ligating group of the [*Cu*(OH)(OOH)] intermediate, as d(O – O) is lengthened. The black triangles indicate the process as calculated in the closed system approach (([Cu]⁰ + Mn²⁺ + H⁺_s), charge = 3⁺, septet multiplicity), while the red triangles the process calculated without the metal ion (([Cu]⁰ + H⁺_s), charge = 1⁺, triplet multiplicity).

Figure S7 The constraint force (λ) as a function of time for two different O – O distance constraints (d(O – O) between the oxo ligand and the oxygen of the incoming water molecule), observed in the investigation of the [*Cu*(OH)(O)] intermediate (System 3, with septet ([*Cu*]⁺ + Mn²⁺) multiplicity).

(top) d(O – O) = 2.1 Å as the incoming water molecule is brought increasingly closer. This is a typical constraint run for 1.2 ps (until grey dotted line). The running time-average of λ (< λ >, red line) is seen to converge.

(bottom) d(O - O) = 1.8 Å after lengthening the formed bond for the system with septet multiplicity ($[Cu]^0 + Mn^{2+} + H_s^+$). This run shows how sensitive λ is to events that occur within the system. After 600 fs (grey dashed line), a proton is accepted by the O initially part of the incoming water molecule. $\langle \lambda \rangle$ after this event (blue line) is seen to converge rapidly, and though the system was allowed to evolve for 1.2 ps beyond the normal run time, no change in $\langle \lambda \rangle$ was observed.

References

- 1 Bon Kweon Koo, Bull Korean Chem Soc, 2001, 22, 113.
- 2 C. J. Cramer, *Essentials of Computational Chemistry: Theories and Models*, Wiley, Chichester, 2005.