Supporting Information

Band Gap Opening in Stanene Induced by Patterned B-N doping

Priyanka Garg,† Indrani Choudhuri,† Arup Mahata,† Biswarup Pathak, †,#,*

[†]Discipline of Chemistry and [#]Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology (IIT) Indore, Indore. M.P. 453552, India Email: biswarup@iiti.ac.in

Contents

Figure S1: Total density of states [with and without the effect of spin orbit coupling (SOC)] of (a) pure stanene, (b) B@stanene, and (c) N@stanene, respectively. The Fermi level shifted to zero, indicated by black dashed line.

Figure S2: Total density of states [with and without the effect of spin orbit coupling (SOC)] of B-N@stanene of (a) pattern-a, (b) pattern-b, (c) pattern-c, and (d) pattern-d, respectively. Fermi level is shifted to zero and indicated by a black dashed line.

Figure S3: TDOS (total density of states) of B@stanene, N@stanene, and 4%B-N@stanene (pattern-a) using HSE06 level of theory. The Fermi level is shifted to zero and indicated by a black dashed line.

Text S1. Formation Energy (E_f) Calculation

Figure S4: Total energy fluctuation during AIMD simulations of (a) B@stanene and (b) N@stanene at 300K temperature.

Figure S5: Total energy fluctuation during AIMD simulations of different doped system; (a) pattern-a; (b) pattern-b; (c) pattern-c and (d) pattern-d, respectively at 300K temperature.

Figure S6: Phonon dispersion of (a) B@, and (b) N@stanene.

Figure S7: Phonon dispersion of 4%B-N@stanene for (a) pattern-a at further relaxing the structure by relaxing the cell shape and volume; (b) pattern-b; (c) pattern-c and (d)pattern-d, respectively by not relaxing the cell volume.

Figure S8: TDOS and PDOS of 4%BN@stanene (pattern-a) after different uniaxial tensile strain of 1% to 5% represented in figure from (a) to (e). The Fermi level is shifted to zero, indicated by green dash line.

Figure S9: TDOS and PDOS of 4%BN@stanene (pattern-a) after different uniaxial compressive strain of 3% to 5% represented in figure from (a) to (c). The Fermi level is shifted to zero, indicated by black dash line.

Figure S10: TDOS and PDOS of 4%BN@stanene (pattern-a) after different biaxial tensile strain of 1% to 5% represented in figure from (a) to (e). The Fermi level is shifted to zero, indicated by green dash line.

Figure S11: TDOS and PDOS of 4%BN@stanene (pattern-a) after different biaxial compressive strain of 2% to 5% represented in figure from (a) to (d). The Fermi level is shifted to zero, indicated by black dash line.

Figure S12: Electrostatic potential of (a) pure stanene and (b) B-N@stanene (pattern-a).

Table S1: Band gap (E_g) value with uniaxial and biaxial tensile and compressive strain of 4%BN@stanene (pattern-a) and their bond length after strain [Sn-N bond length given in parenthesis (d_{Sn-N})] and buckling height (h).

Figure S1: Total density of states [with and without the effect of spin orbit coupling (SOC)] of (a) pure stanene, (b) B@stanene, and (c) N@stanene, respectively. The Fermi level shifted to zero, indicated by black dashed line.

Figure S2: Figure S2: Total density of states [with and without the effect of spin orbit coupling (SOC)] of B-N@stanene of (a) pattern-a, (b) pattern-b, (c) pattern-c, and (d) pattern-d, respectively. Fermi level is shifted to zero and indicated by a black dashed line.

Figure S3: TDOS (total density of states) of (a)B@stanene, (b)N@stanene, and (c) 4%B-N@stanene (pattern-a) using HSE06 level of theory. The Fermi level is shifted to zero and indicated by a black dashed line.

Text S1. Formation Energy (Ef)/supercell Calculation:

The formation energies (E_f) for mono- (B@, and N@) and co-doped B-N@) stanene systems are calculated as follows:

$$E_{f} = [E_{B/N@stanene} - E_{stanene}] - x[E_{B/N} - E_{Sn}]$$
(1)

$$E_{f} = [E_{B-N@stanene} - E_{stanene}] - x[E_{B} + E_{N}] - 2E_{Sn}$$
(2)

where, $E_{B/N@stanene}$, $E_{B-N@stanene}$ are the energy of mono doped and co-doped stanene and $E_{stanene}$ is the energy of pure stanene. $E_{B/N}$, E_{Sn} are the chemical potential of dopant (B and N) and Sn atom respectively. E_B and E_{Sn} are calculated from the most stable bulk structure of α -rhombohedral boron and α -Sn, respectively. E_N is calculated from the total energy of N₂ molecule.

Figure S4: Total energy fluctuation during AIMD simulations of (a) B@ stanene and (b) N@ stanene at 300K temperature.

Figure S5: Total energy fluctuation during AIMD simulations of different doped system; (a) pattern-a; (b) pattern-b; (c) pattern-c and (d) pattern-d, respectively at 300K temperature.

Figure S6: Phonon dispersion of 5×5 supercell (50 atoms) of (a) B@, and (b) N@stanene.

Figure S7: Phonon dispersion of 5×5 supercell (50 atoms) of 4%B-N@stanene: (a) pattern-a without any symmetry constraint; (b) pattern-b; (c) pattern-c and (d) pattern-d, respectively.

Figure S8: TDOS and PDOS of 4%BN@stanene (pattern-a) after different uniaxial tensile strain of 1% to5% represented in figure from (a) to (e). The Fermi level is shifted to zero and indicated by a green dashed line.

Figure S9: TDOS and PDOS of 4%BN@stanene (pattern-a) after different uniaxial compressive strain of 3-5% represented in figure from (a) to (c). Here, the Fermi level is shifted to zero and indicated by a green dashed line.

Figure S10: TDOS and PDOS of 4%BN@stanene (pattern-a) after different biaxial tensile strain of 1% to5% represented in figure from (a) to (e). Here the Fermi level is shifted to zero and indicated by a green dashed line.

Figure S11: TDOS and PDOS of 4%BN@stanene (pattern-a) after different biaxial compressive strain of 2% to5% represented in figure from (a) to (d). Here the Fermi level is shifted to zero and indicated by a green dashed line.

Figure S12: Electrostatic potential of (a) pure stanene and (b) B-N@stanene (pattern-a)

Table S1: Band gap (E_g) value with uniaxial and biaxial tensile and compressive strain of 4%BN@stanene (pattern-a) and their bond length after strain [Sn-N bond length given in parenthesis (d_{Sn-N})] and buckling height (h).

% Strain	E _g (eV)		$\mathbf{d}_{\mathrm{Sn-B}}\left(\mathbf{d}_{\mathrm{Sn-N}} ight)$		h(Å)	
	Uniaxial	Biaxial	Uniaxial	Biaxial	Uniaxial	Biaxial
-5	0.08	0.00	2.16 (2.00)	2.14 (2.00)	3.33	4.83
-4	0.08	0.00	2.16 (2.00)	2.16 (2.01)	2.67	1.68
-3	0.06	0.10	2.17 (2.01)	2.16 (2.00)	1.34	4.32
-2	0.13	0.08	2.17 (2.00)	2.17 (2.01)	1.13	1.57
-1	0.13	0.13	2.18 (2.01)	2.17 (2.00)	1.16	1.58
0	0.08	0.08	2.18 (2.01)	2.18 (2.01)	1.09	1.09
1	0.10	0.12	2.18 (2.01)	2.19 (2.01)	1.08	1.14
2	0.12	0.05	2.19 (2.01)	2.20 (2.01)	1.14	1.10
3	0.12	0.00	2.19 (2.01)	2.21 (2.01)	1.12	1.07
4	0.05	0.00	2.20 (2.01)	2.22 (2.01)	1.14	1.02
5	0.00	0.00	2.20 (2.01)	2.22 (2.00)	1.12	0.98