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1 Force espectroscopy experiments

Functionalization. The typical random immobilization on AFM tips and samples leads to many
of the immobilized protein molecules are unable to interact with their partners because their
interacting surfaces are used to anchor them to the support, which makes binding and subsequent
rupture only occurring in a small percentage of approaches. Herein, an implemented procedure
for tip and sample functionalization optimizing the recognition ability was used. Each protein
molecule has a few lysine residues in their structure. First, once the protein complexes were
formed, Sulfo-LC-SPDP crosslinker bound randomly to the primary amino groups of superficial
lysines, and then labeled proteins were separated chromatographically from each FNR complex.
Later, proteins were reduced with DTT and left exposed reactive sulfhydryl groups reacted with
maleimide-PEG tips, forming disulfide bonds, or reacted with the thiol protected PDP groups in
the case of the mica substrates. Thus, both partners were immobilized exposing the interaction
surface of one molecule towards the other [Ref. 41 in the ms].

This method achieved a large increase in successful rupture events with respect to the corre-
sponding random labeling using the same procedure, as was analyzed previously in detail [Ref.
34 in the ms]. The results range from 5-23%, with random labeling, to 40-77% with Fld-tagged
tips and 34-61% for Fd-tagged probes in efficiency ratio for ”useable curves” showing specific
unbinding events regarding the total approaches. The increase with regard the randomly func-
tionalized samples oscillated between 3-13 and 2-4 times for Fld and Fd approaches, respectively,
and the differences attributed to the type of complex [Ref. 34 in the ms].

Selection of the specific forces. The total adhesion peaks generated during each force-distance
curve either originates from a specific interaction (formation of a FNR-Fd/Fld bond) or from a
non-specific one of any other origin. The use of PEG spacers to attach protein ligands to the
AFM tip in unbinding DFS studies increase the length and flexibility of the sensor, allowing the
molecules to freely move favoring first recognition and later the identification of the specific forces
at the scans. The feature-rich stretching profile in water presented by PEG tethers constitutes

Figure 1: Representative experimental retraction force curve for a specific unbinding event corresponding to a
single FNR-Fd complex. The Fz scan shows also a non-specific adhesion peak -in red to be distinguished- that
follows the slope of the retraction. The unbinding event occurs at the unbinding length or tip-sample separation
that is close to the length of the linker, around 20 nm, given by the piezo displacement encompassing the non-
linear portion of the retraction curve before the rupture. The black line at this part represents the corresponding
stretch of PEG according the WLC function. The shape of the force peak and the distance at which occurs ensure
specificity. These considerations add certainty that measured rupture forces come from recognition events under
study and not from artifacts or non-specific tip-sample adhesions.
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a fingerprint of specificity, so specific force peaks show a nonlinear delay parabolic-like shape,
which is characteristic of the stretching of a PEG linker, preceding the jump. The flexible tether
sustains the increasing force until the complex dissociates, as indicated by a sudden jump to
zero force. This occurs at a certain force value (unbinding force, FU ) and tip-sample distance
(unbinding length, LU ). In contrast, in non-specific adhesions the contact curve extends towards
negative values keeping the same slope, indicating that the bare tip, not the sensor, remains in
contact with the surface. Figure 1 shows a representative Fz curve describing the two adhesion
types. Control experiments were developed adding an excess of free ligand to block the FNR
binding sites, at different R and for both type of complexes. In all the cases, they produced
an important decrease in successful rupture events, giving very similar more probable rupture
forces at the histograms, thus verifying the specificity and correctness of the measurements [Ref.
34 in the ms].

2 Potential Model and Simulation Details

We model the free energy profile for a mechanical rupture of a biological complex event as:

G(xp) = D(1− e−axp)2 + Ue−(xp−x†)2/b + F0 [1 + tanhw(xp − s)] . (1)

Each one of the three terms of this profile reflects one of the three characteristic regions of this
system: 1) a Morse potential creating an equilibrium well for the bound state; 2) a Gaussian
barrier for the first steep barrier; 3) a tanh term for the smooth slope to the dissociation state, as
an energetic plateau. In this sense, we can relate the free energy magnitudes with the parameters
of the potential ∆G† ≈ D+U and ∆G0 = D+2F0. The remaining parameters set the qualitative
shape of the profile, set such that the we have a steep first slope and a smooth second slope.

The exact set of parameters is : D = 12pNnm, a = 3nm−1, U = 24pNnm, x† = 0.5nm,
b = 0.03nm−2, F0 = 24pNnm, w = 0.75nm−1 and s = 4.0nm, setting a free energy barrier
∆G† = 7.7kBT and ∆G0 = 14.7kBT .

We want to stress that the exact shape of this profile is not a critical aspect of the model,
as long as we maintain the scale separation of the two slopes.

3 Simulation protocol

Numerical force spectroscopy experiment simulations are carried out by integrating the Langevin
equation of motion,

mẍp = −mηẋp −∇G(xp) + FWLC (γ − xp) + ξ(t), (2)

where m is the reduced mass of the complex, η the viscous damping and ξ(t) white thermal
noise. The term −∇G(xp) is the force derived from the movement in the free energy profile,
while FWLC is the force exerted by the polymer, modeled, by a Worm Like Chain model:
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kBT
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where P is the persistence length, P = 0.37nm for the PEG polymer used here, and L its
contour length (L = 20nm in our case).

Regarding the involved coordinates, xp is the coordinate of the particle moving in the free
energy profile G(xp) while γ is the distance of this particle to the linear spring (AFM tip), such
that γ − xp is the extension of the WLC linker (polymer linker), and thus FWLC (γ − xp) is the
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force exerted by the polymer. As the AFM moves at constant velocity (force-extension mode),
λ = V t is a control parameter (not fluctuating), which can be expressed as λ = γ + FWLC/Kc,
being Kc the elastic constant of the linear spring. Here we consider that force equilibrium at the
tip of the AFM, and thust FWLC (γ−xp) = Kc∆z, where ∆z is the elongation of the linear spring.
This is a reasonable assumption due to the scale separation between the AFM tip (∼ µm) and
the polymer linker (∼ nm).

The Langevin equation of motion is integrated by a fourth-order Runge-Kutta stochastic
algorithm. Choosing a certain pulling velocity V = λ/t, we run numerical experiments starting
at λ = 0 and stopping at λ = 40nm to ensure that the rupture event has taken place (polymer
length is L = 20nm). This is looped for 10000 realizations for each pulling velocity.

We use normalized time and mass units m̃ = 1 and t̃ = 1, but pN units for force and nm
for length, given that we are mainly interested in comparing forces, lengths and energy with
the experiments. Simulations are carried out at room temperature T = 4.1pNnm = kBT . The
damping in the normalized time units is η = 10.

4 Calculation of the work performed over a force-extension tra-
jectory

As discussed in [1], the proper definition for the non-equilibrium work performed on a system
is dW = Fdλ, where λ is a control parameter (in contrast with fluctuating variables, which are
stochastic variables) Here dλ = V dt- where V is the pulling velocity of the cantilever. According
to Fig. 1 in main text, λ = γ + ∆z, where ∆z is the cantilever deflection, modeled as a linear
spring, so ∆z = F/KC . The work accumulated along a non-equilibrium transition from λ = 0 to
λ†, where λ† is a sufficiently large value of λ so that the rupture event has occurred1, is defined
as:

W =

∫ λ†

0
F (λ)dλ. (4)

By changing the variable to γ (and neglecting the change in the coordinate xp), we obtain

W =

∫ γ†

0
FWLCdγ +

1

2

f †

KC
. (5)

In this sense W depends only on the rupture force f †.

5 Fitting of experimental data from other complexes

Table I in main manuscript shows data for ∆G† and ∆G0 for six different ligand-receptor
complexes, including the FNR-Fd and FNR-Fld analyzed here, showing how ∆G0 > ∆G† is
found. ∆G0 values are taken from calorimetry experiments. ∆G† are determined from force
spectroscopy measurements. In order to determine them we reinterpret the original data in the
context of our model.

Dynamic force spectroscopy AFM experiments for LFA-1:ICAM-1 and LFA-1:ICAM-2 com-
plexes expressed in Jurkat cells where originally published in [2], and interpreted within a two-
barrier profile obtaining by a two-region fitting of Bell-Evans expression. As discussed in the

1In the case of mechanical unbinding the exact value of λ† is not critical, as once the rupture event has occurred,
the interaction disappears and thus 〈F 〉 = 0 from then on. This is different from stretching of biomolecules where,
once denatured, and underlying polymer stretching is still present
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Figure 2: Fitting of dynamic force spectroscopy experiments for LFA-1:ICAM-1 and LFA-
1:ICAM-2 complexes taken from [2] to Eq. (3) in main text. Inset : Proposed free energy
profile for such complexes according to previous fitting.

main text, we consider more appropriate the proposed protocol, and thus we reinterpret the
data in this context.

Figure 2 shows unbinding force data for LFA-1:ICAM-1 and LFA-1:ICAM-2 taken from [2]
and fitted to Eq. (3) of main text. This allows us to obtain the free energy barrier height
and position, yielding LFA-1:ICAM-1: ∆G† = 8.57 ± 0.42kBT and x† = 0.18 ± 0.01nm and
LFA-1:ICAM-2: ∆G† = 7.57± 0.38kBT and x† = 0.40± 0.01nm. Inset shows the proposed free
energy profile according to our model and the obtained magnitudes.

Data for Biotin:Streptavidin and Biotin:Avidin complexes is taken from [3] although origi-
nally published in [4]. Here, due to the vast range of unfolding rates employed, one would see
a clear deviation from Eq. (3) at lowest rates. As mentioned in the main text, this might be
an effect of the second smooth slope, which starts to be ”seen” by the experiment due to the
extremely low pulling velocities.

6 Goodness of fit and model selection.

In the main text we show the results of the experimental data fit to equation (1) in three
different cases: Bell-Evans model (ν = 1 and two fitting parameters) and two more complex
models (ν = 1/2 and ν = 2/3 and three fitting parameters). A first approach to the goodness
of the fit is to evaluate the χ2 parameter which is an usual output of main statistic programs.
However, as both kind of models have different number of fitting parameters a better measure of
its increasing complexity is needed in order to compare the performance of different models. In
the table (2) of the main text we write down the reduced χ2 which is defined as the ratio of the
χ2 and the number of fit degrees of freedom (ndof = n−k , where n is the number of data and k
the number of parameter of the model). Although this quantity takes into account the number
of parameters k, other quantities have been proposed, like the Akaike (AIC) or Bayesian (BIC)
information criterion, that rigorously discriminate between different models [5]. We have also
computed and include in table (2) of the paper the result of the BIC of each model.

The BIC or Schwarz criterion is defined by [6]:

BIC = −2 logL+ (k + 1) log n, (6)
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where L is the maximum likelihood of the fit. A simple commonly used approach to the calculus
of the BIC is given by BIC = n+n log 2π+n log(RSS/n) + (k+ 1) log n with RSS the residual
sum of squares, which is directly proportional to the usually computed χ2. Thus maximum
likelihood criterion corresponds to minimum χ2. BIC introduces a penalty of log n for each
additional fitting parameter of the model. The model with lowest value of BIC is the best
model from the data statistics point of view. BIC has been proved to be in many cases an
effective approach to solve the model selection problem. However, a couple of caveats should be
mentioned here: BIC is suitable for number of data n much larger than the number of parameters
in the model k; and BIC generally penalizes free parameters more strongly than other criteria.

7 Fit of numerical data to other theories

In the manuscript we have fitted the experimental data to Eq. (1) (main text) using three values
for the exponent ν. This theory considers that the barrier decreases as (1 − f/fc)1/ν , being fc
the critical force, fc = ∆G†/νx†. Here, ν = 2/3 correspond to a cubic potential, which is a
reasonable choice as any analytical potential can be expanded to a cubic polynomial next to the
rupture force (for intermediate forces, as the ones found here).

Regarding the numerical data, in Fig. 5 of the manuscript only results for the fitting to the
ν = 2/3 exponent are shown However, in order to study the validity of the the different theories
we can compare predictions for ∆G† and x† to the correct values for a well-known, although
non trivial, potential profile, as the one described in the Eq. (1) of this SI. This analysis is done
in the table and in Figure 3. It shows small differences between (ν = 2/3 and ν = 1/2, though
the first theory describes in a better way the barrier dependence ∆G(F ). Note that Bell-Evans
theory, ν = 1, does not allow for obtaining a prediction for ∆G†.

Being the force barrier dependence the main factor in the theory, we show in Figure 3 the
dependence of the barrier with the force as numerically obtained for the proposed model and
predicted for the two theories. It can be seen that the ν = 2/3 is better for a wide range of force
values.

Figure 3: Barrier decreasing as a function of the applied force for our model potential [Eq. (1)],
and for DFS theory with ν = 2/3 and ν = 1/2.
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Table 1: Potential parameters ∆G† and x† and reduced χ2 and R parameters.

∆G†(kBT ) x†(nm) χ2/R2

Model 7.70 0.50 -
Fit: ν = 2/3 7.28± 0.2 0.35± 0.08 0.06/0.996
Fit: ν = 1/2 6.80± 0.14 0.38± 0.03 0.08/0.997

8 Validation of the analysis protocol

For the sake of consistency, we probe our analysis protocol on the physical model using four
different parameter sets. Figure 4 (left) shows the profiles for each of the four chosen parameter
sets. In order to proof that our analysis procedure allows obtaining both ∆G† and ∆G0, the
profiles have four different dissociation free energies ∆G0 but just two different barrier heights
∆G†. This fact guaranties that the obtention of both free energy magnitudes from the same
force data is completely independent.

Figure 4: Left: Free energy profiles for the four chosen free energy profiles. All show different ∆G0 values bur
barriers are equal in sets A-B and C-D respectively. Right: Typical rupture force f∗ versus pulling rate rf for
the four parameter sets. Solid lines are fittings to Eq. (3) in main text.

We plot in Fig. 4 (right) the typical rupture forces versus the pulling rate for each of the four
parameter sets. We can check how the curves corresponding to sets A-B and C-D superimpose
respectively, as the profile has the same barrier height. The four data sets fit perfectly to
expression (3) in the main text. Fitted parameters ∆G† are shown in Table I below.

Figure 5 shows the Jarzynski estimator ∆G0
J as a function of the inverse of the pulling rate

r−1
f . Dashed lines indicate the dissociation free energy ∆G0 set on each of the four parameter

sets. We can see clear convergence of each data set to their respective ∆G0 values, revealing
that Jarzynski equality allows recovering the dissociation free energy successfully.

Table I gathers the ∆G† and ∆G0 values set for the four profiles together with the estimations
from Jarzysnki equality ∆G0

J and force spectroscopy theory ∆G†f respectively. Indicated ∆G0
J

is the average of the last three values shown in Fig. 5 for each parameter set.

7



Figure 5: Jarzynki estimator ∆G0
J obtained from simulation performed for each parameter set. Dashed lines

indicate the values set for each parameter set ∆G0.

Table 2: Free energy magnitudes ∆G0 and ∆G† set for each parameter set and estimation according to our
analysis protocol ∆G0

J from Jarzynski equality and fitted ∆G†.

Parameter Set ∆G0(kBT ) ∆G†(kBT ) ∆G0
J(kBT ) ∆G†f (kBT )

A 14.6 7.7 13.9± 0.5 7.3± 0.3
B 20.5 7.7 20.3± 1.0 6.7± 0.5
C 27.3 14.1 24.6± 0.3 13.2± 0.6
D 32.2 14.1 32.7± 1.5 12.5± 0.4

9 Effective stiffness

DFS analysis is based in Eq. (1) in the main text which is obtained after several approaches.
Thus, this equation is obtained in the so-called weak spring limit of the system where KM �
KL,KC . Deviations from this case have been previously studied in [7, 8] for instance. Another
approach concerning the stiffness of the system is to assume a constant Keff , thus neglecting
the force dependence of the effective stiffness of the system (which comes mostly from the KL

term, the PEG is not a linear spring) [9]. With these caveats Eq. (1) can be used to analyze
data and a well defined pulling rate rf = KeffV is defined. Note here that from a theoretical
perspective it would be natural to use the well controlled pulling velocity V as control parameter
of the system instead of the pulling rate rf . However, following the tradition in the literature
on the subject, we have decide to present our results in terms of rf . Thus, in our work, we
use a constant value of Keff = 10pN/nm. We could question the validity of this approximation,
then we should point two crucial facts (i) Theory is validated by our numerical simulations.
We use the same approach to study the numerical simulations. There, the barrier parameters
obtained by the DFS analysis show good agreement to the correct values. It shows the degree
of robustness and accuracy of the employed theories. (ii) The error associated to neglecting the
Keff(F ) dependence is similar (same order of magnitude) to the one introduced by two other
unavoidable approximations under the theory: the assumption of an specific form for the force
dependence of barrier and prefactor in the Kramers rate expression, which are at the core of Eq.
(1) result. To finish, this is the price to pay in order to have a simple useful result as Eq. (1).
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Figure 6: Corrected Jarzynski estimators by the bias estimation obtained fitting the work dis-
tributions (blue solid lines in the insets).

10 On the convergence of Jarzynski estimator

The Jarzynksi estimator for a finite number of N irreversible work measurements Wi can be
written as:

∆GJ = − log

[
1

N

N∑
i=1

exp

(
− Wi

kBT

)]
, (7)

where kB is the Boltzmann constant and T the absolute temperature. Although it is an unbiased
estimator when N → ∞, in practice it suffers from poor convergence and it is highly biased
when the system is too far from equilibrium. Efforts have been made on developing analytical
theories to correct the bias for finite N . In particular, under conditions of high dissipation, Ref.
[10] proposes the following expression for the bias of the Jarzynski estimator:

BN = µ+ logN − Ω(logN)1/δ − λ(1−δ)/δ
[
γ +

1− δ
δ

log (logN) + log
q

δ

]
, (8)

where γE = 0.5772 · · · is the Euler-Mascheroni constant and Ω and δ are parameters given by
fitting the work distribution left tail to the following expression:

P (W ) =
q

Ω
exp

[
−
(
|W −WM |

Ω

)δ]
, (9)

where

µ = (δ − 1)

(
Ω

δ

)δ/δ−1

, λ = logN

(
δ

Ω

)δ/δ−1

, (10)

and q is a normalization constant. Then the corrected Jaryzinski estimator is simply ∆G∗J =
∆GJ −BN .

In the case studied here, as mentioned in the main text and shown in Fig. 4, higher pulling
rates lead to an overestimation of the free energy, due to the mentioned issues. Nonetheless,
lowest rates meet the agreement between being close enough to equilibrium and having enough
statistics to reach a well-converged Jarzynski estimator.

However, we calculate now the estimation of the bias shown in Eq. (8) to the work dis-
tributions showing high dissipation and thus being intrinsically biased. Figure 6 shows the
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corrected Jarzynski estimator ∆G∗ with an example of two work distributions fitted to Eq. (9)
(insets), where the dashed vertical lines are the respective free energy values as obtained in the
calorimetry experiments. Comparing with Fig. 4 in the main text, the free energy estimation is
improved, specially in the intermediate rate region. Highest rates have a very poor estimation
of the left tail (lower work values). Therefore, the fits to Eq. (9) are not meaningful, so is not
the calculation of BN .
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