Supporting Information

	$V_{\max,1}$	$V_{\max,2}$	V _{max,3}	V _{max,4}
<i>p</i> -PyCF ₃	10.58	20.49	20.48	
<i>p</i> -PySiF ₃	41.56	42.25	42.23	48.38
<i>p</i> -PyGeF ₃	41.57	47.62	55.62	55.64
p-PySiCl ₃	22.17	23.42	25.58	25.51
o-PySiF ₃	34.86	34.86	35.67	21.89
<i>m</i> -PySiF ₃	39.43	35.67	44.86	46.55
α -furanCF ₃	7.38	10.93	10.93	4.97
α -furanSiF ₃	37.96	31.31	31.31	43.82
α -furanGeF ₃	38.96	34.82	34.81	45.91
β -furanCF ₃	5.91	10.43	10.38	21.67
β -furanSiF ₃	36.21	32.27	32.29	50.25
β -furanGeF ₃	36.61	40.31	40.30	58.91

Table S1 The most positive MEPs on the σ -hole of tetrel atom (V_{max} , kcal/mol) in the neutral monomers

Table S2 Change of T–X (T = C, Si, and Ge; X = F and Cl) bond length (Δr , Å) in the neutral complexes relative to the isolated molecules

	Δr_1	Δr_2	Δr_3
<i>p</i> -PyCF ₃ ···NH ₃ (1)	-0.001	0.005	0.000
p-PySiF ₃ ···NH ₃ (2)	0.037	0.036	0.036
<i>p</i> -PyGeF ₃ NH ₃ (3)	0.047	0.044	0.044
<i>p</i> -PySiCl ₃ ···NH ₃ (4)	0.064	0.071	0.071
o-PySiF ₃ ···NH ₃ (5)	0.036	0.034	0.034
<i>m</i> -PySiF ₃ ···NH ₃ (6)	0.037	0.036	0.035
α -furanCF ₃ ···NH ₃ (7)	-0.004	0.003	0.003
α -furanSiF ₃ ···NH ₃ (8)	0.038	0.034	0.034
α -furanGeF ₃ …NH ₃ (9)	0.046	0.041	0.041
β -furanCF ₃ ···NH ₃ (10)	-0.002	0.004	0.000
β -furanSiF ₃ ···NH ₃ (11)	0.037	0.034	0.034
β -furanGeF ₃ ···NH ₃ (12)	0.047	0.043	0.042

Table S3 Electrostatic energy (E^{ele}), exchange energy (E^{ex}), repulsion energy (E^{rep}), polarization energy (E^{pol}), dispersion energy (E^{disp}), and binding energy (E_b) in the neutral complexes. All are in kcal/mol

	$E^{\rm ele}$	E ^{ex}	E^{rep}	E^{pol}	E^{disp}	E _b
<i>p</i> -PyCF ₃ ···NH ₃ (1)	-0.56	-2.50	4.28	-0.26	-1.79	-0.83
p-PySiF ₃ ···NH ₃ (2)	-74.80	-82.17	168.31	-36.46	-1.35	-26.47
<i>p</i> -PyGeF ₃ NH ₃ (3)	-86.21	-88.27	185.48	-39.53	0.17	-28.36
<i>p</i> -PySiCl ₃ ···NH ₃ (4)	-93.31	-134.98	267.95	-56.80	-8.57	-25.71
o-PySiF ₃ ···NH ₃ (5)	-72.84	-81.10	165.56	-34.87	-1.44	-24.69
<i>m</i> -PySiF ₃ …NH ₃ (6)	-74.34	-82.08	167.95	-36.04	-1.65	-26.16
α -furanCF ₃ ···NH ₃ (7)	-1.04	-2.04	3.51	-0.17	-1.26	-1.00
α -furanSiF ₃ ···NH ₃ (8)	-75.02	-82.58	169.17	-36.52	-1.39	-26.34
α -furanGeF ₃ …NH ₃ (9)	-85.95	-88.15	185.2	-39.14	0.07	-27.97
β -furanCF ₃ ···NH ₃ (10)	-1.11	-2.99	5.12	-0.33	-1.82	-1.12
β -furanSiF ₃ ···NH ₃ (11)	-71.62	-80.21	163.45	-33.95	-1.63	-23.96
β -furanGeF ₃ ····NH ₃ (12)	-84.44	-87.55	183.37	-38.14	-0.04	-26.81

Table S4 The most positive MEPs on the σ -hole of tetrel atom (V_{max} , kcal/mol) in the protonated monomers

	V _{max,1}	V _{max,2}	V _{max,3}	V _{max,4}
H^+ - <i>p</i> -PyCF ₃	85.81(75.23)	114.44	114.35	
H+- <i>p</i> -PySiF ₃	126.03(84.47)	128.93	128.93	132.38
H ⁺ - <i>p</i> -PyGeF ₃	129.00(87.43)	134.75	134.64	142.13
H ⁺⁻ <i>p</i> -PySiCl ₃	92.98(70.81)	107.98	108.00	
H ⁺ -o-PySiF ₃	138.50(103.64)	139.92	139.92	145.61
H^+ - <i>m</i> -PySiF ₃	126.62(87.19)	125.64	125.59	134.26
H^+ - α -furan CF_3	100.38(93.0)	123.24		
H^+ - α -furan SiF_3	144.27(106.31)	136.42	146.62	153.90
H^+ - α -furanGeF ₃	150.57(111.61)	143.58	149.50	167.17
H^+ - β -furan CF	88.86(82.95)	110.95	110.41	119.50
H^+ - β -furan SiF_3	130.12(93.91)	125.89	126.13	143.43
H^+ - β -furanGeF ₃	133.99 (97.38)	132.28	132.57	151.15

Note: Data in parentheses are the difference of $V_{\max,1}$ in the protonated molecule relative to the neutral analogue.

	СТ	Δq
$H_3N\cdots H^+$ - <i>p</i> -PyCF ₃ (13)	0.130	-0.0122 (0.102)
$H_3N\cdots H^+$ - <i>p</i> -PySiF ₃ (14)	0.127	-0.0120 (0.576)
$H_3N\cdots H^+-p-PyGeF_3(15)$	0.133	-0.0146 (0.531)
$H_3N\cdots H^+-p-PySiCl_3(16)$	0.122	-0.0148 (0.547)
$H_3N\cdots H^+$ -o-PySiF ₃ (17)	0.132	-0.0267 (0.572)
$H_3N\cdots H^+$ - <i>m</i> -PySiF ₃ (18)	0.128	-0.0138 (0.574)

Table S5 Charge transfer (CT, e) and change of charge (Δq , e) on the $-TX_3$ group in the hydrogen-bonded complexes at the WB97XD/aug-cc-pVDZ level.

Note: The data in parentheses are the charge on the $-TX_3$ group in the protonated molecule.

Table S6 Electron density (ρ), Laplacian ($\nabla^2 \rho$) and energy density (*H*) at the N····H BCP in the hydrogen-bonded complexes. All are in au.

	ρ	$ abla^2 ho$	Н
H ₃ N···H ⁺ - <i>p</i> -PyCF ₃ (13)	0.064	0.067	-0.024
$H_3N\cdots H^+$ - <i>p</i> -PySiF ₃ (14)	0.062	0.070	-0.022
$H_3N\cdots H^+-p$ -PyGeF ₃ (15)	0.064	0.067	-0.024
$H_3N\cdots H^+$ - <i>p</i> -PySiCl ₃ (16)	0.060	0.073	-0.020
$H_3N\cdots H^+$ -o-PySiF ₃ (17)	0.064	0.069	-0.023
$H_3N\cdots H^+-m-PySiF_3(18)$	0.062	0.070	-0.022

Table S7 Electrostatic energy (E^{ele}), exchange energy (E^{ex}), repulsion energy (E^{rep}), polarization energy (E^{pol}), and dispersion energy (E^{disp}) in the hydrogen-bonded complexes. All are in kcal/mol

	E ^{ele}	E ^{ex}	E ^{rep}	E^{pol}	E^{disp}
$H_3N\cdots H^+-p$ -PyCF ₃ (13)	-32.53	-34.12	66.37	-19.31	-4.84
$H_3N\cdots H^+-p-PySiF_3(14)$	-31.95	-33.51	65.08	-18.70	-4.83
$H_3N\cdots H^+-p-PyGeF_3(15)$	-33.00	-34.84	67.84	-19.89	-4.60
$H_3N\cdots H^+-p$ -PySiCl ₃ (16)	-30.80	-32.33	62.60	-17.54	-4.82
$H_3N\cdots H^+$ -o-PySiF ₃ (17)	-34.59	-37.58	72.53	-20.10	-5.87
$H_3N\cdots H^+$ - <i>m</i> -PySiF ₃ (18)	-32.00	-33.72	65.46	-18.74	-4.91

Fig. S1 Binding energy (E_b) versus the most positive MEP (V_{max}) on the C–T (T = Si and Ge) end in the neutral and protonated molecules

Fig. S2 Optimized structure of another complex between *p*-PySiF₃ and NH₃.

Fig. S3 Optimized structure of complex between *p*-PyTH₃ and NH₃

Fig. S4 Molecular maps of the neutral and the protonated complexes with the electron density (ρ , au), Laplacian ($\nabla^2 \rho$, au) and energy density (*H*, au) at the intermolecular bond critical point

Fig. S5 Binding distance (*R*) versus electron density (ρ) at the Si…N BCP in the tetrel

bond

Fig. S6 Binding energy (E_b) versus second-order perturbation energies (E^2) due to the orbital interactions of $Lp_N \rightarrow BD^*_{C-T}$ (1) and $Lp_N \rightarrow BD^*_{T-X}$ (2) in the neutral and protonated complexes of furanTF₃ and PyTF₃ (T = Si (left) and Ge (right))

Fig. S7 Binding energy (E_b) versus charge transfer (CT) in the hydrogen-bonded complexes