Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

A platform with connections in many directions - further remarkable facets to the multifaceted Methylbiquinoxen dication

Nicolas Leblanc, *a[‡] Damiano Genovese, ^{a‡} Luisa De Cola^{ab} and Annie K. Powell *a^c

Supporting Information

Summary table

A. Synthesis	3
$A_{11}^{-} (1^{2+})[BF_4]_2$	3 3
$A_{12} = 1(OH)_2^{\beta}$	
A ₂₁ -1(OMe) ₂	5
A ₂₂ - 1(OEt) ₂	6
A ₂₃ - 1(OEtOEt) ₂	6
B. Single crystal X-ray diffraction analysis for $1(OH)_2^{\beta}$, $1(OMe)_2$, $1(OEt)_2$ and $1(OEtOEt)_2$	7
B ₁ -1(OH) ₂ ^β	7
B ₂ -1(OMe) ₂	12
B ₃ -1(OEt) ₂	17
B ₄ -1(OEtOEt) ₂	22
C. Structural parameters of 1^{2+} , $1(OH)_2^{\beta}$ and $1(OR)_2$ (R=Me, Et and EtOEt)	27
D. Additional UV-Vis, Fluorescent, NMR and IR studies	31
E. Experimental details	37

Supplementary Figures and tables

Table S1: Specific parameters (distance in Å, angle in degree) of 1^{2+} , $1(OH)_2^{\beta}$, $1(OMe)_2$, $1(OEt)_2$ and $1(OEtOEt)_2$
Table S2: Main Geometrical parameters (distance in Å, angle in degree) of 1^{2+} , $1(OH)_2^{\beta}$, $1(OMe)_2$, $1(OEt)_2$ and $1(OEtOEt)_2$ 29
Table S3: Absorption maxima of 1 ²⁺ , 1(OH) ⁺ and 1(OH) ₂ in different solvent (H ₂ O, MeCN and DCM)
Figure S1: Excitation spectrum of 1 ²⁺ in dilute acetonitrile solution (emission wavelength 500 nm, black solid line) and emission
spectrum (excitation wavelength 330 nm, dashed line)
Figure S2: Fluorescence decay curves of the dication 1^{2+} in acetonitrile solution (green) and of the bis- σ^{H} - adduct $1(OMe)_2$ in
acetonitrile dilute solutions (black) and in solid state (red)
Figure S3: Emission spectra of bis- σ^{H} - adduct 1(OMe) ₂ in acetonitrile dilute solutions (1*10 ⁻⁵ M, red line) and in the solid state (black
line), excitation wavelength 410 nm
Figure S4: Solution state UV-Visible spectra of $1(OH)_2^{\beta}$, $1(OMe)_2$, $1(OEt)_2$ and $1(OEtOEt)_2$
Figure S5: Solid state UV-Visible spectra of $1(OH)_2^{\beta}$, $1(OMe)_2$, $1(OEt)_2$ and $1(OEtOEt)_2$
Table S4: Quantum yields of the bis-σ ^H - adducts 1(OR) ₂ (R=Et, OEtOEt) , in acetonitrile dilute solutions (1*10 ⁻⁵ M, MeCN) and in solid state (SS)
Figure S6: Absorption (left) and emission (right) spectra of titration of 1(OMe) ₂ with HCl (in Et ₂ O, diluted in Acetonitrile, to avoid presence of water). The 2-steps mechanism is highlighted by the absorption and emission trends at individual wavelengths (bottom graphs, left and right respectively)
Figure S7: UV-Vis spectrum of $1(OD)^+$ (1^{2+} dissolved in D ₂ O at pH=6.46 – pink solid line) and $1(OMe)^+$ (1^{2+} dissolved in MeOH-d ₄ –
pink dashed line) overlaid with the spectra of 1 ²⁺ (black solid and dashed lines) after mild acidification. The spectra of the
neutral bis- σ^{H} -adduct 1(OMe) ₂ (orange solid line) and dipseudobase 1(OH) ₂ (orange dashed line) have been added for comparison34
Figure S8: (a) Overlay of the NMR spectra of 1^{2+} dissolved in D ₂ O at different pH (using Na ₃ PO ₄) showing the appearance of the
monopseudobase $1(OD)^+$, as the major product, by increasing the pH. (b) NMR spectrum of 1^{2+} dissolved in D ₂ O at pH=6.46 showing the typical signature of the monopseudobase $1(OD)^+$, as the major product. (c) NMR spectrum of the solution used in (b) of the rise situation of the solution (1 Figure 10 OC) at pH=6.46 showing the typical signature of the monopseudobase $1(OD)^+$, as the major product. (c) NMR spectrum of the solution used
1^{2+} dissolved in MeOH-d ₄ showing the typical signature of the mono- σ^{H} -adduct $1(OMe-d_3)^+$, as the major product. (e) NMR spectrum of the solution used in (d) after in situ mild acidification (1.5mL H ₂ SO ₄ 97%), showing the typical signature of the solution used in (d) after in situ mild acidification (1.5mL H ₂ SO ₄ 97%), showing the typical signature of the
Scheme S1: Complete view of the different pH-dependent species identified and their corresponding equilibria in solution: 1^{2+} ,
$1(OH)^{-}$, $1(OH)_{2}$, $1(OWe)^{-}$ and $1(OWe)_{2}$. The sixth hypothetical species, the mixed bis- σ^{-} -adduct $1(OH)(OMe)$, is also
represented
Figure S9: Solid state intrared spectra of 1(OH) ₂ ^p , 1(OMe) ₂ , 1(OEt) ₂ and 1(OEtOEt) ₂

A. Synthesis

A₁- Synthesis of the pseudo-base 1(OH)₂ (α and β phases)

A₁₁- (1²⁺)[BF₄]₂

According to literature,¹ a stirred solution of trimethyloxonium tetrafluoroborate (14.32 g; 96.8 mmol) in acetonitrile (500 mL) is treated portion wise with biquinoxaline (5 g; 19.3 mmol) at 0 °C. The resultant dark green mixture is then left stirring for 5 d at ambient temperature. The resulting solid is filtered, washed with Et₂O and dried in air. The crude powder (7.67g) was added to 400 mL of water. After boiling the mixture and hot filtration, the yellow/brown solution was cooled and stored overnight at 0°C. The resulting yellow/off-white crystals were collected by filtration, washed with water and dried under vacuum. Yield: 4.69 g (52%) Anal. Calcd for $C_{18}H_{16}B_2N_4F_8$: C, 46.80; H, 3.49; N, 12.13. Found: C, 47.38; H, 4.05; N, 12.19. ¹H NMR (500 MHz, CD₃CN): $\delta = 10.35$ (s, 2H), 8.72 (dd, J = 8.3, 1.3 Hz, 2H), 8.62 (d, J = 8.6 Hz, 2H), 8.52 (dd, J = 8.7, 7.1, 1.5 Hz, 2H), 8.49 – 8.45 (m, 1H), 4.91 (s, 6H)

$A_{12} - 1(OH)_2^{\alpha}$

In a 500 mL flask were mixed $(1^{2+})[BF_4]_2$ (1.5 g, 3.25 mmol) and K₂CO₃ (2 g, 14.5 mmol) with 400 mL of distillate water. The mixture is then inserted in an ultrasound bath and left for 2h. After turning into a homogeneous orange powder, the mixture is filtered, cleaned with distillated water, and dried under vacuum. The product $1(OH)_2^{\alpha}$ (1.015 g, 97%) is obtained as an orange crystalline powder.

¹H NMR (500 MHz, DMSO-*d*₆): δ = 7.47 (d, *J* = 7.5 Hz, 2H), 7.31 (ddd, *J* = 7.5 Hz, *J* = 1 Hz, 2H), 6.99 (d, *J* = 8.1 Hz, 2H), 6.92 (t, *J* = 7.2 Hz, 2H), 6.17 (d, *J* = 6.1 Hz, 2H), 6.09 (d, *J* = 6.1 Hz, 2H), 3.20 (s, 6H).

E.A: [calc. (C, 67.07; H, 5.63; N, 17.38) / meas. (C, 66.81; H, 5.44; N, 17.46)

A_{13} - 1(OH)₂^{β}

Pure crystals of $1(OH)_2^{\beta}$ were obtained as follow. In a pillbox, 100 mg of 1_{OH}^{α} are dissolved in 12 mL of DMSO leading to a dark yellow solution. The pillbox was covered with an aluminium foil perforated with needles holes, and inserted in a flask containing 200 mL of distillate water. The flask was then sealed and left standing over three weeks, thereafter red blocks-like crystals formed. The crystals were filtered, cleaned with water and dried under vacuum, leading to $1(OH)_2^{\beta}$ as a pure phase (88 mg, 88 %).

¹ N. Leblanc, S. Sproules, K. Fink, L. Sanguinet, O. Aleveque, E. Levillain, P. Rosa, A. K. Powell, Chem. Sci. 2016, 7, 3820-3828.

A₂- Bis-σ^H-adducts 1(OR)₂ (R=Me, Et, OEtOEt)

A₂₁-1(OMe)₂

160 mg (0.5 mmol) of $1(OH)_2^{\alpha}$ were completely dissolved in 100 mL of hot MeOH. After cooling down, the bright yellow solution was then left to slowly evaporate. After three weeks, the orange crystals formed are filtered from the solution (reduced to ≈ 50 mL), washed with a small amount of MeOH and dried under vacuum, leading to 135 mg (77%) of $1(OMe)_2$ as a pure crystalline phase. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.62$ (dt, J = 7.8, 1.3 Hz, 2H), 7.34 (m, 2H), 6.97 (m, 4H), 6.34 (s, 1H), 6.26 (s, 1H), 3.42 (s, 3H), 3.38 (s, 3H), 3.37 (s, 3H), 3.33 (s, 3H). E.A: [calc. (C, 68.55; H, 6.33; N, 15.99) / meas. (C, 68.34; H, 6.45; N, 15.84)

XRPD of 1(OMe)₂

A₂₂ - 1(OEt)₂

Same procedure as described above for $1(OMe)_2$, $(1(OH)_2^{\alpha}$: 50 mg) but EtOH (30 mL) is used instead of MeOH. Yield (31 mg, 52%). ¹H NMR (500 MHz, CDCl₃): δ = 7.60 (m, 2H), 7.33 (td, *J* = 7.32, 7.30, 1.23 Hz, 2H), 6.95 (m, 4H), 6.39 (s, 1H), 6.26 (s, 1H), 3.63 (M, 4H), 3.38 (s, 3H), 3.35 (s, 3H), 1.13 (t, 3H), 1.06 (t, 3H). E.A: [calc. (C, 69.82; H, 6.92; N, 14.80) / meas. (C, 69.49; H, 7.13; N, 14.78)

A₂₃ - 1(OEtOEt)₂

Same procedure as described above for $1(OMe)_2$, $(1(OH)_2^{\alpha}$: 50 mg) but 2-Ethoxyethanol is used instead of MeOH. Yield (35 mg, 48%). ¹H NMR (500 MHz, THF-d⁸): $\delta = 7.53$ (dd, J = 7.6, 0.7 Hz, 2H), 7.29 (t, J = 8.0 Hz , 2H), 7.00 (d, J = 8.1 Hz, 2H), 6.92 (t, J = 7.5 Hz, 2H), 6.28 (s, 2H), 3.79 (m, 2H), 3.71 (m, 2H), 3.41 (s, 6H), 3.33 (m, 8H), 1.05 (t, 6H). E.A: [calc. (C, 66.35; H, 7.13; N, 12.38) / meas. (C, 68.78; H, 7.36; N, 12.04)

B. Single crystal X-ray diffraction analysis for $1(OH)_2^{\beta}$, $1(OMe)_2$, $1(OEt)_2$ and $1(OEtOEt)_2$.

$B_1-1(OH)_2^\beta$

Table 1. Crystal data and structure refinement.

```
Empirical formula
                                      C18 H18 N4 O2
Formula weight
                                      322.36
Temperature
                                      180(2) K
Wavelength
                                      0.71073 A
Crystal system, space group
                                      Monoclinic, P 21/c
                         a = 5.8457(6) A
b = 13.5935(14) A
c = 9.8497(11) A
                                             alpha = 90 deg.
beta = 98.476(9) deg.
gamma = 90 deg.
Unit cell dimensions
Volume
                                      774.14(14) A^3
Z, Calculated density
                                      2, 1.383 Mg/m^3
Absorption coefficient
                                      0.093 \text{ mm}^{-1}
F(000)
                                      340
Crystal size
                                      0.3 x 0.2 x 0.1 mm
Theta range for data collection
                                      2.572 to 27.332 deg.
Limiting indices
                                      -7<=h<=7, -17<=k<=15, -12<=1<=12
Reflections collected / unique
                                      4612 / 1717 [R(int) = 0.0266]
Completeness to theta = 25.242
                                      97.7 %
Absorption correction
                                      None
Refinement method
                                      Full-matrix least-squares on F^2
                                      1717 / 0 / 146
Data / restraints / parameters
Goodness-of-fit on F^2
                                      0.962
Final R indices [I>2sigma(I)]
                                      R1 = 0.0371, wR2 = 0.0964
R indices (all data)
                                      R1 = 0.0558, wR2 = 0.1034
Extinction coefficient
                                      0.084(15)
Largest diff. peak and hole
                                      0.164 and -0.116 e.A^-3
```

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х	У	Z	U(eq)
C(1)	3540(3)	6654(1)	2287(2)	53(1) 45(1) 52(1) 57(1) 57(1) 52(1) 45(1) 42(1) 44(1) 48(1) 43(1) 50(1)
C(9)	690(2)	7325(1)	3636(1)	
C(8)	911(2)	8285(1)	3166(2)	
C(7)	-429(3)	9028(1)	3585(2)	
C(6)	-2029(3)	8839(1)	4465(2)	
C(5)	-2304(2)	7895(1)	4911(2)	
C(4)	-961(2)	7131(1)	4518(1)	
C(3)	181(2)	5508(1)	4795(1)	
C(2)	2414(2)	5774(1)	4284(1)	
N(1)	1943(2)	6533(1)	3277(1)	
N(2)	-1354(2)	6169(1)	4936(1)	
O(1)	3965(2)	6063(1)	5468(1)	

Table 3. Bond lengths [A] and angles [deg].

C(1)-N(1)C(1)-H(1A)C(1)-H(1B)C(1)-H(1C)C(9)-N(1)C(9)-C(8)C(9)-C(4)C(8)-C(7)C(8)-H(8)C(7)-C(6)C(7)-H(7)C(6)-C(5)C(6)-H(6)C(5)-C(4)C(5)-H(5)C(4)-N(2)C(3)-N(2)C(3)-C(3)#1C(3)-C(2)C(2)-N(1)C(2)-H(2)O(1)-H(9)	$\begin{array}{c} 1.4560(16)\\ 0.979(19)\\ 0.983(19)\\ 0.971(19)\\ 1.3764(18)\\ 1.397(2)\\ 1.4157(17)\\ 1.378(2)\\ 1.008(17)\\ 1.390(2)\\ 0.984(19)\\ 1.374(2)\\ 0.95(2)\\ 1.391(2)\\ 1.001(17)\\ 1.3991(18)\\ 1.2926(17)\\ 1.462(3)\\ 1.5111(16)\\ 1.4232(17)\\ 1.4299(19)\\ 0.958(14)\\ 0.91(2)\\ \end{array}$
$\begin{array}{c} N(1) - C(1) - H(1A) \\ N(1) - C(1) - H(1B) \\ H(1A) - C(1) - H(1B) \\ N(1) - C(1) - H(1C) \\ H(1A) - C(1) - H(1C) \\ H(1B) - C(1) - H(1C) \\ N(1) - C(9) - C(8) \\ N(1) - C(9) - C(4) \\ C(8) - C(9) - C(4) \\ C(7) - C(8) - H(8) \\ C(7) - C(8) - H(8) \\ C(9) - C(8) - H(8) \\ C(9) - C(8) - H(8) \\ C(8) - C(7) - C(6) \\ C(8) - C(7) - H(7) \\ C(6) - C(7) - H(7) \\ C(6) - C(7) - H(7) \\ C(5) - C(6) - H(6) \\ C(7) - C(6) - H(6) \\ C(7) - C(6) - H(6) \\ C(6) - C(5) - C(4) \\ C(6) - C(5) - H(5) \\ C(4) - C(5) - H(5) \\ \end{array}$	$\begin{array}{c} 110.6(10)\\ 110.1(10)\\ 111.5(15)\\ 106.6(10)\\ 107.9(14)\\ 110.1(15)\\ 124.51(12)\\ 116.64(12)\\ 118.84(13)\\ 120.06(13)\\ 119.8(10)\\ 120.2(10)\\ 121.08(15)\\ 120.4(10)\\ 118.5(9)\\ 119.56(14)\\ 121.8(11)\\ 118.7(11)\\ 120.75(13)\\ 123.9(10)\\ 115.3(10) \end{array}$

C(5)-C(4)-N(2)	119.46(11)
C(5)-C(4)-C(9)	119.68(13)
N(2)-C(4)-C(9)	120.75(12)
N(2)-C(3)-C(3)#1	119.75(12)
N(2)-C(3)-C(2)	121.13(12)
C(3)#1-C(3)-C(2)	119.03(13)
O(1) - C(2) - N(1)	113.73(12)
O(1) - C(2) - C(3)	105.69(10)
N(1) - C(2) - C(3)	108.43(11)
O(1) - C(2) - H(2)	110.7(8)
N(1) - C(2) - H(2)	107.4(8)
C(3) - C(2) - H(2)	110.9(8)
C(9) - N(1) - C(2)	116.25(10)
C(9) - N(1) - C(1)	120.11(12)
C(2) - N(1) - C(1)	117.96(11)
C(3) - N(2) - C(4)	118.13(10)
С(2)-0(1)-Н(9)	106.6(14)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1

Table 4. Anisotropic displacement parameters (A^2 x 10^3). The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
C(1) C(9) C(8) C(7) C(6) C(5) C(4) C(3) C(2) N(1) N(2) O(1)	48(1) 40(1) 51(1) 61(1) 56(1) 47(1) 39(1) 37(1) 38(1) 45(1) 37(1) 37(1)	64(1) 49(1) 55(1) 48(1) 49(1) 52(1) 47(1) 48(1) 46(1) 51(1) 47(1) 58(1)	$\begin{array}{c} 49(1) \\ 45(1) \\ 50(1) \\ 62(1) \\ 67(1) \\ 59(1) \\ 48(1) \\ 43(1) \\ 49(1) \\ 50(1) \\ 47(1) \\ 54(1) \end{array}$	5(1) 2(1) 6(1) 7(1) -2(1) -2(1) 0(1) -3(1) -1(1) 5(1) -1(1) 1(1)	17(1) 6(1) 7(1) 6(1) 12(1) 13(1) 7(1) 9(1) 12(1) 17(1) 10(1) 10(1)	$\begin{array}{c} 0(1) \\ -1(1) \\ -3(1) \\ 1(1) \\ 5(1) \\ 1(1) \\ -1(1) \\ -2(1) \\ 0(1) \\ 1(1) \\ -1(1) \\ -1(1) \end{array}$

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for nle717.

	x	У	z	U(eq)
H(1A) H(1B) H(1C) H(8) H(7) H(6) H(5) H(2) H(9)	4850(30) 2720(30) 4130(30) 2060(30) -240(30) -2910(30) -3470(30) 3020(20) 5410(40)	7068(13) 6928(13) 6004(14) 8438(13) 9709(14) 9368(15) 7700(13) 5222(11) 6015(15)	$2667(18) \\ 1425(19) \\ 2126(18) \\ 2523(17) \\ 3284(18) \\ 4733(19) \\ 5510(18) \\ 3845(14) \\ 5240(20)$	60(4) 60(4) 59(5) 60(4) 64(5) 70(5) 58(4) 39(3) 83(6)

N(1)-C(9)-C(8)-C(7) C(4)-C(9)-C(8)-C(7) C(9)-C(8)-C(7)-C(6) C(8)-C(7)-C(6)-C(5)	179.88(13) 1.4(2) -0.6(2) -0.9(2)
C(7) - C(6) - C(5) - C(4)	1.6(2)
C(6)-C(5)-C(4)-N(2) C(6)-C(5)-C(4)-C(9)	-177.02(14) -0.7(2)
N(1) - C(9) - C(4) - C(5)	-179.37(13)
N(1)-C(9)-C(4)-N(2)	-0.8(2) -3.12(19)
C(8) - C(9) - C(4) - N(2)	175.49(13)
C(3)#1-C(3)-C(2)-O(1)	-90.29(17)
N(2) - C(3) - C(2) - N(1)	-35.93(17)
C(8)-C(9)-N(1)-C(2)	149.39(14)
C(4)-C(9)-N(1)-C(2) C(8)-C(9)-N(1)-C(1)	-32.08(17)
C(4) - C(9) - N(1) - C(1)	175.00(13)
O(1)-C(2)-N(1)-C(9) C(3)-C(2)-N(1)-C(9)	-68.11(14) 49 13(16)
O(1) - C(2) - N(1) - C(1)	85.41(15)
C(3)-C(2)-N(1)-C(1) C(3)#1-C(3)-N(2)-C(4)	-157.35(12) -179.30(14)
C(2)-C(3)-N(2)-C(4)	4.07(18)
C(5)-C(4)-N(2)-C(3) C(9)-C(4)-N(2)-C(3)	-166.65(13) 17.10(19)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1

Datablock: I

Bond precisi	on: C-C =	0.0019 A	Wavelength=0.71073	
Cell:	a=5.8457(6)	b=13.5935(14)	c=9.8497(11)	
	alpha=90	beta=98.476(9))gamma=90	
Temperature:	180 K			
	Calcula	ted	Reported	
Volume	774.14(14)	774.14(14)	
Space group	P 21/c		P 21/c	
Hall group	-P 2ybc		-P 2ybc	
Moiety formu	la C18 H18	N4 O2	C18 H18 N4 O2	
Sum formula	C18 H18	N4 O2	C18 H18 N4 O2	
Mr	322.36		322.36	
Dx,g cm-3	1.383		1.383	
Ζ	2		2	
Mu (mm-1)	0.093		0.093	
F000	340.0		340.0	
F000'	340.13			
h,k,lmax	7,17,12		7,17,12	
Nref	1756		1717	
Tmin,Tmax	0.978,0	.991		
Tmin'	0.972			
Correction m	ethod= Not give	en		
Data complet	eness= 0.978	Theta (max	x) = 27.332	
R(reflection	s) = 0.0371(11)	94) wR2(re	eflections)= 0.1034(1717)	
S = 0.962	Npar	= 146		

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

.Alert level B

.Alert level C

PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low 0.977 Note

Alert level G

PLAT793_ALERT_4_G The Model has Chirality at C2 (Centro SPGR) S Verify

ALERT level A = Most likely a serious problem - resolve or explain **ALERT level B** = A potentially serious problem, consider carefully **ALERT level C** = Check. Ensure it is not caused by an omission or oversight **ALERT level G** = General information/check it is not something unexpected

 B_{2} -1(OMe)₂ Table 1. Crystal data and structure refinement.

Empirical formula	C20 H22 N4 O2
Formula weight	350.41
Temperature	180(2) К
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, Pcab
Unit cell dimensions	a = 10.2451(8) A alpha = 90 deg. b = 11.0740(7) A beta = 90 deg. c = 15.3632(11) A gamma = 90 deg.
Volume	1743.0(2) A^3
Z, Calculated density	4, 1.335 Mg/m^3
Absorption coefficient	0.089 mm^-1
F(000)	744
Crystal size	0.24 x 0.222 x 0.194 mm
Theta range for data collection	3.016 to 27.370 deg.
Limiting indices	-9<=h<=13, -14<=k<=14, -19<=1<=19
Reflections collected / unique	8828 / 1941 [R(int) = 0.0545]
Completeness to theta = 25.242	98.8 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1941 / 0 / 163
Goodness-of-fit on F^2	1.015
Final R indices [I>2sigma(I)]	R1 = 0.0476, $wR2 = 0.1214$
R indices (all data)	R1 = 0.0683, $wR2 = 0.1326$
Extinction coefficient	0.066(6)
Largest diff. peak and hole	0.184 and -0.198 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
C(1) C(9) C(8) C(7) C(6) C(5) C(4) C(3) C(2) C(10) N(1) N(2) O(1)	5921(2) 4367(2) 4152(2) 3286(2) 2631(2) 2899(2) 3771(2) 4744(2) 4919(2) 3809(2) 5162(1) 4121(1) 3742(1)	$\begin{array}{c} 3016(2) \\ 1414(2) \\ 1882(2) \\ 1317(2) \\ 266(2) \\ -245(2) \\ 308(2) \\ 314(2) \\ 1661(2) \\ 3426(2) \\ 1953(1) \\ -295(1) \\ 2161(1) \end{array}$	3433(1) 3042(1) 2207(1) 1649(1) 1893(1) 2693(1) 3269(1) 4618(1) 4547(1) 5045(2) 3652(1) 4032(1) 4893(1)	$\begin{array}{c} 40(1)\\ 31(1)\\ 36(1)\\ 40(1)\\ 39(1)\\ 35(1)\\ 31(1)\\ 30(1)\\ 31(1)\\ 44(1)\\ 32(1)\\ 31(1)\\ 36(1) \end{array}$

Table 3. Bond lengths [A] and angles [deg].

C(1)-N(1) $C(1)-H(1A)$ $C(1)-H(1B)$ $C(1)-H(1C)$ $C(9)-C(8)$ $C(9)-C(4)$ $C(8)-C(7)$ $C(8)-C(7)$ $C(8)-H(8)$ $C(7)-C(6)$ $C(7)-H(7)$ $C(6)-C(5)$ $C(6)-H(6)$ $C(5)-C(4)$ $C(5)-H(5)$ $C(4)-N(2)$ $C(3)-R(2)$ $C(3)-C(2)$ $C(3)-C(3)#1$ $C(3)-C(2)$ $C(2)-C(1)$ $C(2)-N(1)$ $C(2)-H(2)$ $C(10)-H(10A)$ $C(10)-H(10B)$ $C(10)-H(10C)$	$\begin{array}{c} 1.450(2)\\ 1.04(3)\\ 0.98(2)\\ 0.99(2)\\ 1.378(2)\\ 1.400(2)\\ 1.412(2)\\ 1.383(3)\\ 0.99(2)\\ 1.394(3)\\ 1.02(2)\\ 1.381(2)\\ 1.02(2)\\ 1.381(2)\\ 1.02(2)\\ 1.398(2)\\ 1.05(2)\\ 1.396(2)\\ 1.293(2)\\ 1.462(3)\\ 1.507(2)\\ 1.429(2)\\ 1.45(2)\\ 1.03(2)\\ 1.421(2)\\ 1.02(3)\\ 1.01(3)\\ 1.00(3)\end{array}$
N(1)-C(1)-H(1A) N(1)-C(1)-H(1B) H(1A)-C(1)-H(1C) H(1A)-C(1)-H(1C) H(1B)-C(1)-H(1C) H(1B)-C(1)-H(1C) N(1)-C(9)-C(8) N(1)-C(9)-C(4) C(8)-C(9)-C(4) C(7)-C(8)-C(9) C(7)-C(8)-H(8) C(9)-C(8)-H(8) C(9)-C(8)-H(8) C(8)-C(7)-C(6) C(8)-C(7)-H(7) C(6)-C(7)-H(7) C(5)-C(6)-C(7) C(5)-C(6)-H(6)	$111.8(14) \\111.1(13) \\104.1(18) \\109.1(12) \\111.5(17) \\109(2) \\123.72(16) \\117.57(14) \\118.68(16) \\120.03(18) \\118.9(12) \\120.9(12) \\121.35(17) \\119.0(12) \\119.6(12) \\119.01(17) \\118.5(11) \\118.5(11) \\110.01(17) \\118.5(11) \\110.01(17) \\118.5(11) \\110.01(17) \\118.5(11) \\110.01(17) \\118.5(11) \\110.01(17) \\118.5(11) \\110.01(17) \\118.5(11) \\110.01(17) \\118.5(11) \\110.01(17) \\11$

С(7)-С(6)-Н(6)	122.5(11)
C(6) - C(5) - C(4)	120.73(17)
C(6) - C(5) - H(5)	121.3(12)
C(4) - C(5) - H(5)	117.8(12)
N(2)-C(4)-C(5)	119.11(15)
N(2)-C(4)-C(9)	120.75(15)
C(5)-C(4)-C(9)	119.93(15)
N(2)-C(3)-C(3)#1	119.25(19)
N(2)-C(3)-C(2)	121.65(14)
C(3)#1-C(3)-C(2)	119.07(18)
O(1)-C(2)-N(1)	114.54(14)
0(1)-C(2)-C(3)	104.89(13)
N(1)-C(2)-C(3)	108.20(13)
0(1)-C(2)-H(2)	110.3(10)
N(1)-C(2)-H(2)	106.7(10)
C(3) - C(2) - H(2)	112.3(10)
O(1) - C(10) - H(10A)	114.0(13)
0(1)-C(10)-H(10B)	108.4(16)
H(10A) - C(10) - H(10B)	110(2)
O(1) - C(10) - H(10C)	112.2(16)
H(10A) - C(10) - H(10C)	103(2)
H(10B) - C(10) - H(10C)	109(2)
C(9) - N(1) - C(2)	110.00(14) 120.77(14)
C(9) - N(1) - C(1)	120.77(14) 110 92(14)
C(2) = N(1) - C(1)	119.02(14) 117.54(15)
C(3) = N(2) = C(4)	112 67(15)
	TT2.01(T2)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+1

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for nle740g. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
C(1) C(9) C(8) C(7) C(6) C(5) C(4) C(3) C(2) C(10) N(1) N(2) O(1)	37(1)27(1)37(1)39(1)38(1)32(1)32(1)32(1)30(1)47(1)32(1)30(1)34(1)	$\begin{array}{c} 37(1) \\ 33(1) \\ 38(1) \\ 48(1) \\ 44(1) \\ 35(1) \\ 29(1) \\ 31(1) \\ 31(1) \\ 35(1) \\ 30(1) \\ 31(1) \\ 33(1) \end{array}$	$\begin{array}{c} 45(1)\\ 33(1)\\ 34(1)\\ 32(1)\\ 35(1)\\ 37(1)\\ 31(1)\\ 31(1)\\ 31(1)\\ 33(1)\\ 51(1)\\ 34(1)\\ 32(1)\\ 41(1)\end{array}$	$5(1) \\ 0(1) \\ 5(1) \\ 1(1) \\ -4(1) \\ -4(1) \\ 1(1) \\ 2(1) \\ 1(1) \\ -4(1) \\ 3(1) \\ 2(1) \\ -2(1)$	$5(1) \\ 3(1) \\ 3(1) \\ -1(1) \\ -3(1) \\ -2(1) \\ -1(1) \\ 2(1) \\ 1(1) \\ 2(1) \\ 1(1) \\ 0(1) \\ 5(1)$	$\begin{array}{c} -6(1) \\ 4(1) \\ 5(1) \\ 10(1) \\ 5(1) \\ 3(1) \\ 2(1) \\ -1(1) \\ 0(1) \\ 7(1) \\ -3(1) \\ 0(1) \\ 2(1) \end{array}$

	x	У	Z	U(eq)
H(1A) H(1B) H(1C) H(8) H(7) H(6) H(5) H(2) H(10A) H(10B) H(10C)	5330(20) 6490(20) 6460(20) 4560(20) 3100(20) 1980(20) 2420(20) 5710(20) 3880(30) 3010(30) 4610(30)	3770(20) 3250(20) 2839(18) 2645(19) 1695(19) -156(19) -1030(20) 1964(15) 3930(20) 3680(20) 3660(20)	$\begin{array}{c} 3332(13)\\ 3917(15)\\ 2915(15)\\ 2022(13)\\ 1059(14)\\ 1494(12)\\ 2905(14)\\ 4895(11)\\ 4491(16)\\ 5382(18)\\ 5382(16) \end{array}$	52(6) 51(6) 45(5) 40(5) 45(5) 40(5) 47(6) 30(4) 63(7) 78(8) 68(8)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for nle740g.

Table 6. Torsion angles [deg] for nle740g.

N(1)-C(9)-C(8)-C(7) $C(4)-C(9)-C(8)-C(7)$ $C(9)-C(8)-C(7)-C(6)$ $C(8)-C(7)-C(6)-C(5)$ $C(7)-C(6)-C(5)-C(4)$ $C(6)-C(5)-C(4)-N(2)$ $C(6)-C(5)-C(4)-N(2)$ $C(6)-C(5)-C(4)-N(2)$ $N(1)-C(9)-C(4)-N(2)$ $N(1)-C(9)-C(4)-N(2)$ $N(1)-C(9)-C(4)-C(5)$ $C(8)-C(9)-C(4)-C(5)$ $C(8)-C(9)-C(4)-C(5)$ $N(2)-C(3)-C(2)-O(1)$ $C(3)#1-C(3)-C(2)-O(1)$	$\begin{array}{c} -176.69(16)\\ 5.3(3)\\ -1.2(3)\\ -2.8(3)\\ 2.7(3)\\ -173.39(15)\\ 1.4(3)\\ -8.8(2)\\ 169.32(15)\\ 176.50(15)\\ -5.3(2)\\ 83.65(18)\\ -94.3(2) \end{array}$
N(2)-C(3)-C(2)-N(1)	-39.0(2)
C(3)#1-C(3)-C(2)-N(1)	143.00(19)
C(8) - C(9) - N(1) - C(2)	156.98(16)
C(4) - C(9) - N(1) - C(2)	-25.0(2)
C(8)-C(9)-N(1)-C(1)	-5.0(3)
C(4)-C(9)-N(1)-C(1)	173.11(16)
O(1) - C(2) - N(1) - C(9)	-70.86(19)
O(1) - C(2) - N(1) - C(1)	91.26(19)
C(3)-C(2)-N(1)-C(1)	-152.17(16)
C(3)#1-C(3)-N(2)-C(4)	-173.25(17)
C(2) - C(3) - N(2) - C(4)	8.8(2)
C(9)-C(4)-N(2)-C(3)	16.8(2)
N(1)-C(2)-O(1)-C(10)	-73.30(19)
C(3)-C(2)-O(1)-C(10)	168.23(15)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+1

Datablock: I

Bond precisi	on: C-C =	= 0.0023 A	Wavelength=0.71073
Cell:	a=10.2451(8)	b=11.0740(7)	c=15.3632(11)
	alpha=90	beta=90	gamma=90
Temperature:	180 K		
	Calcul	ated	Reported
Volume	1743.0	(2)	1743.0(2)
Space group	Рса	b	Рсаb
Hall group	-P 2bc	2ac	-P 2bc 2ac
Moiety formu	la C20 H2	2 N4 O2	C20 H22 N4 O2
Sum formula	C20 H2	2 N4 O2	C20 H22 N4 O2

Mr 350.42 350.41 1.335 1.335 Dx,g cm-3 4 Ζ 4 Mu (mm-1) 0.089 0.089 F000 744.0 744.0 F000' 744.29 h,k,lmax 13,14,19 13,14,19 1941 Nref 1973 0.979,0.983 Tmin,Tmax Tmin' 0.979 Correction method= Not given Data completeness= 0.984 Theta(max) = 27.370R(reflections) = 0.0476(1339) wR2(reflections) = 0.1326(1941) S = 1.015Npar= 163

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

"Alert level G

 PLAT128_ALERT_4_G Alternate Setting for Input Space Group Pcab
 Pbca

 Note
 PLAT793_ALERT_4_G The Model has Chirality at C2 (Centro SPGR)
 S

 Verify
 S

0 **ALERT level A** = Most likely a serious problem - resolve or explain 0 **ALERT level B** = A potentially serious problem, consider carefully 0 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight

2 **ALERT level G** = General information/check it is not something unexpected

B₃-1(**OEt**)₂

Table 1. Crystal data and structure refinement.

Empirical formula C22 H26 N4 O2 378.47 Formula weight Temperature 180(2) K Wavelength 0.71073 A Crystal system, space group Monoclinic, P21/a a = 8.8290(11) A b = 11.3130(16) A c = 10.4030(13) Aalpha = 90 deg. beta = 107.834(9) deg. Unit cell dimensions gamma = 90 deg.Volume 989.1(2) A^3 Z, Calculated density 2, 1.271 Mg/m^3 Absorption coefficient 0.083 mm^-1 F(000) 404 Crystal size 0.378 x 0.353 x 0.156 mm Theta range for data collection 2.734 to 27.402 deg. Limiting indices -11<=h<=11, -14<=k<=14, -13<=1<=10 Reflections collected / unique 4943 / 2205 [R(int) = 0.0256]Completeness to theta = 25.24298.8 % Absorption correction None Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 2205 / 0 / 180 Goodness-of-fit on F^2 0.927 Final R indices [I>2sigma(I)] R1 = 0.0379, wR2 = 0.0968R indices (all data) R1 = 0.0622, WR2 = 0.1075Extinction coefficient 0.094(10)Largest diff. peak and hole 0.186 and -0.154 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
C(1)	793(2)	1345(1)	4605(2)	$63(1) \\ 52(1) \\ 62(1) \\ 72(1) \\ 73(1) \\ 63(1) \\ 52(1) \\ 47(1) \\ 49(1) \\ 65(1) \\ 71(1) \\ 53(1) \\ 49(1) \\ 53(1) \\ 53(1) \\ 49(1) \\ 53(1$
C(9)	1451(1)	2924(1)	3229(2)	
C(8)	2066(2)	2144(2)	2465(2)	
C(7)	2469(2)	2556(2)	1367(2)	
C(6)	2249(2)	3724(2)	976(2)	
C(5)	1609(2)	4505(2)	1691(2)	
C(4)	1229(1)	4122(1)	2826(1)	
C(3)	381(1)	4596(1)	4643(1)	
C(2)	1012(2)	3449(1)	5322(2)	
C(10)	3075(2)	3080(2)	7418(2)	
C(11)	4522(2)	3654(2)	8339(2)	
N(1)	1001(1)	2581(1)	4325(1)	
N(2)	532(1)	4921(1)	3498(1)	
O(1)	2573(1)	3730(1)	6196(1)	

Table 3. Bond lengths [A] and angles [deg].

C(1)-N(1) C(9)-N(1) C(9)-C(8) C(9)-C(4) C(8)-C(7) C(7)-C(6) C(6)-C(5) C(5)-C(4) C(3)-N(2) C(3)-N(2) C(3)-C(3)#1 C(3)-C(2) C(2)-N(1) C(2)-O(1) C(10)-C(11) C(10)-C(11) C(9)-N(1) C(9)-N(1) C(10)-C(11) C(10)-C(11)-C(11) C(10)-C(11)-C(11) C(10)-C(11)-C(11) C(10)-C(11)-C(11)-C(11)-C(11) C(10)-C($\begin{array}{c} 1.4522(18)\\ 1.3735(19)\\ 1.403(2)\\ 1.414(2)\\ 1.377(3)\\ 1.379(3)\\ 1.382(2)\\ 1.393(2)\\ 1.3955(17)\\ 1.2922(18)\\ 1.466(3)\\ 1.4997(18)\\ 1.4264(18)\\ 1.4350(16)\\ 1.4166(18)\\ 1.491(2)\end{array}$
$\begin{array}{l} N(1)-C(9)-C(8)\\ N(1)-C(9)-C(4)\\ C(8)-C(9)-C(4)\\ C(7)-C(8)-C(9)\\ C(8)-C(7)-C(6)\\ C(7)-C(6)-C(5)\\ C(6)-C(5)-C(4)\\ C(5)-C(4)-C(9)\\ N(2)-C(4)-C(9)\\ N(2)-C(3)-C(2)\\ C(3)+1-C(3)-C(2)\\ C(3)+1-C(3)-C(2)\\ C(3)+1-C(3)-C(2)\\ N(1)-C(2)-C(3)\\ O(1)-C(2)-C(3)\\ O(1)-C(2)-C(3)\\ O(1)-C(2)-C(3)\\ O(1)-C(1)-C(1)\\ C(9)-N(1)-C(2)\\ C(9)-N(1)-C(1)\\ C(2)-N(1)-C(1)\\ C(3)-N(2)-C(4)\\ C(10)-O(1)-C(2)\\ \end{array}$	$123.56(14) \\117.88(11) \\118.52(14) \\119.97(16) \\121.38(15) \\119.82(18) \\120.13(17) \\118.71(14) \\120.14(13) \\121.02(12) \\118.84(14) \\123.52(11) \\117.58(15) \\113.85(10) \\109.53(12) \\104.71(10) \\108.78(14) \\118.01(11) \\121.72(12) \\119.38(13) \\117.54(11) \\115.45(11) \\115.45(11) \\115.45(11) \\117.54(11) \\115.45(11) \\110.110 \\110.$

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1

Table 4. Anisotropic displacement parameters (A^2 x 10^3). The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
C(1) C(9) C(8) C(7) C(6) C(5) C(4) C(3) C(2) C(10) C(11) N(1) N(1) N(2) O(1)	63(1)42(1)49(1)56(1)72(1)64(1)47(1)43(1)45(1)72(1)65(1)53(1)49(1)49(1)	$\begin{array}{c} 43(1) \\ 56(1) \\ 66(1) \\ 89(1) \\ 94(1) \\ 70(1) \\ 56(1) \\ 45(1) \\ 45(1) \\ 46(1) \\ 65(1) \\ 87(1) \\ 43(1) \\ 47(1) \\ 58(1) \end{array}$	$76(1) \\ 54(1) \\ 65(1) \\ 66(1) \\ 58(1) \\ 56(1) \\ 51(1) \\ 49(1) \\ 54(1) \\ 53(1) \\ 53(1) \\ 53(1) \\ 60(1) \\ 50(1) \\ 49(1) $	$\begin{array}{c} 0(1) \\ -9(1) \\ -18(1) \\ -28(1) \\ -16(1) \\ -7(1) \\ -8(1) \\ -1(1) \\ 0(1) \\ 10(1) \\ 5(1) \\ -3(1) \\ -3(1) \\ 6(1) \end{array}$	12(1)8(1)9(1)15(1)27(1)20(1)13(1)10(1)13(1)10(1)8(1)14(1)14(1)10(1)	3(1) 0(1) 4(1) 1(1) -8(1) -3(1) 0(1) 0(1) 5(1) 1(1) -2(1) 0(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3).

	x	У	Z	U(eq)
H(1A)	$\begin{array}{c} 200(20)\\ 1790(20)\\ 60(30)\\ 2210(20)\\ 2940(20)\\ 2480(20)\\ 1383(19)\\ 338(16)\\ 3290(20)\\ 2140(20)\\ 5340(20)\\ 4880(20)\\ 4280(20)\end{array}$	891(16)	3680(20)	79(5)
H(1B)		926(16)	5040(20)	83(5)
H(1C)		1310(18)	5260(20)	100(6)
H(8)		1265(16)	2741(18)	74(5)
H(7)		1975(16)	820(20)	88(6)
H(6)		4011(16)	220(20)	86(6)
H(5)		5353(16)	1444(18)	67(4)
H(5)		3139(11)	5899(15)	50(4)
H(10A)		2230(20)	7190(20)	94(6)
H(10A)		3061(15)	7854(19)	82(5)
H(11A)		3706(16)	7910(20)	89(6)
H(11B)		3234(18)	9190(20)	94(6)
H(11C)		4521(19)	8590(20)	92(6)

N(1) - C(9) - C(8) - C(7) $C(4) - C(9) - C(8) - C(7)$ $C(9) - C(8) - C(7) - C(6)$ $C(8) - C(7) - C(6) - C(5)$ $C(7) - C(6) - C(5) - C(4)$ $C(6) - C(5) - C(4) - N(2)$ $C(6) - C(5) - C(4) - C(5)$ $N(1) - C(9) - C(4) - C(5)$ $N(1) - C(9) - C(4) - N(2)$ $N(2) - C(3) - C(2) - N(1)$ $N(2) - C(3) - C(2) - N(1)$ $N(2) - C(3) - C(2) - N(1)$ $N(2) - C(3) - C(2) - O(1)$ $C(3) # 1 - C(3) - C(2) - O(1)$ $C(3) # 1 - C(3) - C(2) - O(1)$ $C(3) # 1 - C(3) - C(2) - O(1)$ $C(3) # 1 - C(3) - C(2) - O(1)$ $C(3) - C(3) - C(2) - O(1)$ $C(3) - C(3) - C(2) - O(1)$ $C(3) - C(3) - C(2) - O(1)$ $C(4) - C(9) - N(1) - C(2)$ $C(4) - C(9) - N(1) - C(1)$ $C(3) - C(2) - N(1) - C(1)$ $C(3) + 1 - C(3) - N(2) - C(4)$ $C(2) - C(3) - N(2) - C(4)$ $C(3) - C(4) - N(2) - C(3)$ $C(11) - C(10) - O(1) - C(2)$	$\begin{array}{c} 179.09(13)\\ 1.3(2)\\ -1.4(2)\\ -0.1(2)\\ 1.8(2)\\ -177.74(13)\\ -1.9(2)\\ -177.59(12)\\ 0.31(19)\\ -1.81(18)\\ 176.09(12)\\ -30.26(16)\\ 152.63(13)\\ 92.19(14)\\ -84.92(15)\\ 155.14(12)\\ -27.07(17)\\ -14.0(2)\\ 163.80(13)\\ -76.27(15)\\ 40.56(14)\\ 93.12(14)\\ -150.06(12)\\ -178.53(13)\\ 4.39(18)\\ -171.14(12)\\ 13.02(18)\\ -167.02(13)\\ \end{array}$
C(5)-C(4)-N(2)-C(3) $C(9)-C(4)-N(2)-C(3)$ $C(11)-C(10)-O(1)-C(2)$ $N(1)-C(2)-O(1)-C(10)$ $C(3)-C(2)-O(1)-C(10)$	-171.14(12) 13.02(18) -167.02(13) -93.61(15) 146.80(13)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1

Datablock: I

Bond precisi	on: C-C =	0.0023 A	Wavelength=0.71073
Cell:	a=8.8290(11)	b=11.3130(16)	c=10.4030(13)
	alpha=90	beta=107.834(9)gamma=90
Temperature:	180 K		
	Calcula	ted	Reported
Volume	989.2(2)	989.1(2)
Space group	P 21/a		P 21/a
Hall group	-P 2yab		-P 2yab
Moiety formu	la C22 H26	N4 O2	C22 H26 N4 O2
Sum formula	C22 H26	N4 O2	C22 H26 N4 O2
Mr	378.47		378.47
Dx,g cm-3	1.271		1.271
Z	2		2
Mu (mm-1)	0.083		0.083
F000	404.0		404.0
F000'	404.15		
h,k,lmax	11,14,1	3	11,14,13
Nref	2249		2205
Tmin,Tmax	0.969,0	.987	
Tmin'	0.969		
Correction m	ethod= Not giv	en	
Data complet	eness= 0.980	Theta(max)	= 27.402
R(reflection	s) = 0.0379(13)	99) wR2(ref	lections)= 0.1075(2205)
S = 0.927	Npar	= 180	

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

Alert level C

PLAT761_ALERT_1_C CIF Contains no X-H Bonds	Please
PLAT762_ALERT_1_C CIF Contains no X-Y-H or H-Y-H Angles Check	. Please

Alert level G

PLAT128_ALERT_4_G Alternate Setting for Input Space Group P21/a	P21/c
Note	
PLAT180_ALERT_4_G Check Cell Rounding: # of Values Ending with 0 =	3
PLAT793_ALERT_4_G The Model has Chirality at C2 (Centro SPGR)	S
Verify	

- 0 ALERT level A = Most likely a serious problem resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 2 ALERT level C = Check. Ensure it is not caused by an omission or oversight 3 ALERT level G = General information/check it is not something unexpected

B₄-1(OEtOEt)₂

Table 1. Crystal data and structure refinement.

Empirical formula C26 H34 N4 O4 Formula weight 466.57 Temperature 180(2) K Wavelength 0.71073 A Crystal system, space group Monoclinic, P21/a a = 8.6751(8) A b = 11.2503(10) A c = 13.3424(10) A alpha = 90 deg. beta = 94.681(7) deg. gamma = 90 deg. Unit cell dimensions Volume 1297.84(19) A^3 2, 1.194 Mg/m^3 Z, Calculated density Absorption coefficient 0.081 mm^{-1} F(000) 500 Crystal size $0.3 \times 0.2 \times 0.1 \text{ mm}$ Theta range for data collection 2.371 to 27.453 deg. Limiting indices -11<=h<=8, -14<=k<=14, -17<=1<=17 Reflections collected / unique 7771 / 2890 [R(int) = 0.0578]Completeness to theta = 25.24298.5 % Absorption correction None Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 2890 / 0 / 157 Goodness-of-fit on F^2 0.878 Final R indices [I>2sigma(I)] R1 = 0.0498, wR2 = 0.1279R indices (all data) R1 = 0.0819, wR2 = 0.1460Extinction coefficient 0.193(18)Largest diff. peak and hole 0.154 and -0.145 e.A^-3

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
C(1) C(9) C(8) C(7) C(6) C(5) C(4) C(3) C(2) C(10) C(11) C(12) C(13) N(1) N(2) O(1) O(2)	$\begin{array}{c} 4216(2)\\ 3108(2)\\ 2334(2)\\ 1612(2)\\ 1660(2)\\ 2450(2)\\ 3167(2)\\ 4523(2)\\ 4140(2)\\ 2673(2)\\ 1545(2)\\ 117(3)\\ -300(4)\\ 3873(2)\\ 4024(2)\\ 2822(1)\\ 1148(2) \end{array}$	6301(2) 7847(2) 7030(2) 7407(2) 8588(2) 9399(2) 9048(2) 9579(1) 8422(1) 7932(2) 8492(2) 8028(3) 7014(4) 7535(1) 9883(1) 8680(1) 7623(1)	$10262(2) \\11291(1) \\11863(1) \\12681(1) \\12981(1) \\12446(1) \\11601(1) \\10256(1) \\9741(1) \\8196(1) \\7431(1) \\5896(2) \\5219(2) \\10469(1) \\11106(1) \\9050(1) \\6696(1)$	$\begin{array}{c} 69(1)\\ 61(1)\\ 68(1)\\ 75(1)\\ 75(1)\\ 69(1)\\ 60(1)\\ 56(1)\\ 58(1)\\ 68(1)\\ 73(1)\\ 101(1)\\ 133(1)\\ 61(1)\\ 59(1)\\ 62(1)\\ 85(1) \end{array}$
Table 3.	Bond lengths	[A] and angle	s [deg].	
C(1)-N(2) C(9)-N(2) C(9)-C(4) C(9)-C(4) C(3)-C(1) C(5)-C(4) C(3)-N(2) C(3)-N(2) C(3)-C(2) C(2)-N(2) C(2)-N(2) C(10)-O(2) C(10)-O(2) C(12)-O(2)	1) 1) 3) 4) 7) 5) 5) 4) 2) 3)#1 2) 1) (1) (1) (1) (1) (2) (2) (13)	1.452 1.373 1.400 1.413 1.370 1.386 1.376 1.396 1.293 1.463 1.497 1.424 1.424 1.414 1.494 1.412 1.481	(2) (2) (2) (3) (3) (3) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	
$\begin{array}{c} N(1) - C(2) \\ N(1) - C(2) \\ C(8) - C(2) \\ C(7) - C(3) \\ C(5) - C(4) \\ N(2) - C(5) \\ N(2) - C(5) \\ C(3) \# 1 - C(5) \\ N(1) - C(5) \\ O(1) - C(5) \\ O(2) \\ O(2) - C(5) \\ O(2) \\ O(2) - C(5) \\ O(2) - C(5) \\ O(2) \\ O(2) \\ O(2) $	$\begin{array}{l} 9) - C(8) \\ 9) - C(4) \\ 9) - C(4) \\ 9) - C(9) \\ 7) - C(6) \\ 5) - C(7) \\ 5) - C(7) \\ 5) - C(4) \\ 4) - N(2) \\ 4) - C(9) \\ 4) - C(9) \\ 4) - C(9) \\ 3) - C(3) \# 1 \\ 30 - C(2) \\ C(3) - C(2) \\ C(3) - C(2) \\ 2) - O(1) \\ 2) - C(3) \\ 2) - C(3) \\ 10) - C(11) \\ 11) - C(10) \\ 12) - C(13) \\ 10 - C(2) \end{array}$	123.47(117.98(120.05(121.50(129.33(120.55(120.55(120.90(120.90(118.72(117.54(114.42(109.80(104.66(108.14(108.7(2) 118.83(16) 15) 16) 18) 19) 18) 19) 16) 16) 15) 17) 13) 13) 13) 15) 16)) 14)	

C(9)-N(1)-C(1)	121.09(14)
C(2) - N(1) - C(1)	119.52(13)
C(3) - N(2) - C(4)	117.76(14)
C(10)-O(1)-C(2)	114.31(13)
C(11)-O(2)-C(12)	113.99(18)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z+2

Table 4. Anisotropic displacement parameters (A^2 x 10^3). The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
C(1) C(9) C(8) C(7) C(6) C(5) C(4) C(2) C(10) C(11) C(12) C(13) N(1) N(2) O(1) O(2)	$\begin{array}{c} 67(1)\\ 55(1)\\ 64(1)\\ 68(1)\\ 73(1)\\ 71(1)\\ 56(1)\\ 54(1)\\ 54(1)\\ 72(1)\\ 77(1)\\ 85(2)\\ 110(2)\\ 63(1)\\ 58(1)\\ 58(1)\\ 85(1)\\ \end{array}$	$50(1) \\ 57(1) \\ 62(1) \\ 79(1) \\ 84(1) \\ 66(1) \\ 58(1) \\ 48(1) \\ 51(1) \\ 67(1) \\ 74(1) \\ 151(2) \\ 206(4) \\ 47(1) \\ 52(1) \\ 59(1) \\ 98(1)$	90(1) 69(1) 77(1) 78(1) 71(1) 70(1) 66(1) 66(1) 66(1) 68(1) 66(1) 81(1) 73(1) 68(1) 68(1) 67(1) 70(1)	$\begin{array}{c} -2(1) \\ 4(1) \\ 9(1) \\ 13(1) \\ 4(1) \\ 2(1) \\ 4(1) \\ -2(1) \\ -1(1) \\ -3(1) \\ -1(1) \\ -36(2) \\ -1(1) \\ 1(1) \\ -7(1) \\ -12(1) \end{array}$	$2(1) \\ 1(1) \\ 0(1) \\ 5(1) \\ 12(1) \\ 9(1) \\ 4(1) \\ 3(1) \\ 5(1) \\ 4(1) \\ 4(1) \\ -4(1) \\ -1(1) \\ 7(1) \\ 4(1) \\ 2(1) \\ -$	$\begin{array}{c} 0(1)\\ 0(1)\\ -6(1)\\ -9(1)\\ 1(1)\\ 7(1)\\ 1(1)\\ 2(1)\\ 1(1)\\ -1(1)\\ -6(1)\\ -10(2)\\ -36(2)\\ 0(1)\\ 2(1)\\ 2(1)\\ -7(1)\end{array}$

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3).

	x	У	z	U(eq)
H(1A) H(1B) H(1C) H(8) H(7) H(6) H(5) H(2) H(10A) H(10B) H(11A) H(11B) H(11A) H(12A) H(12B) H(13A) H(13C)	4572 5004 3297 2310 1078 1163 2505 5008 2306 3668 632 2009 603 -806 625 -915 -880	5909 6263 5914 6230 6860 8828 10189 8177 7154 7837 8754 9175 8649 8353 6649 7294 6442	$10877 \\9798 \\9974 \\11686 \\13044 \\13539 \\12652 \\9362 \\8380 \\7923 \\7743 \\7129 \\5527 \\6156 \\5016 \\4636 \\5567 \\$	103 103 103 81 90 91 83 69 82 82 82 82 88 88 121 121 121 199 199

$\begin{split} &N(1) - C(9) - C(8) - C(7) \\ &C(4) - C(9) - C(8) - C(7) \\ &C(9) - C(8) - C(7) - C(6) \\ &C(8) - C(7) - C(6) - C(5) \\ &C(7) - C(6) - C(5) - C(4) - N(2) \\ &C(6) - C(5) - C(4) - C(9) \\ &N(1) - C(9) - C(4) - C(5) \\ &C(8) - C(9) - C(4) - N(2) \\ &C(8) - C(9) - C(4) - N(2) \\ &N(2) - C(3) - C(2) - N(1) \\ &N(2) - C(3) - C(2) - N(1) \\ &N(2) - C(3) - C(2) - N(1) \\ &N(2) - C(3) - C(2) - O(1) \\ &C(3) \# 1 - C(3) - C(2) - O(1) \\ &C(3) \# 1 - C(3) - C(2) - O(1) \\ &O(1) - C(10) - C(11) - O(2) \\ &C(8) - C(9) - N(1) - C(2) \\ &C(8) - C(9) - N(1) - C(2) \\ &C(8) - C(9) - N(1) - C(2) \\ &C(8) - C(9) - N(1) - C(1) \\ &C(4) - C(9) - N(1) - C(1) \\ &C(3) - C(2) - N(1) - C(1) \\ &C(3) \# 1 - C(3) - N(2) - C(4) \\ &C(5) - C(4) - N(2) - C(3) \\ &C(9) - C(4) - N(2) - C(3) \\ &C(11) - C(10) - O(1) - C(2) \\ &N(1) - C(2) - O(1) - C(1) \\ &C(3) + C(2) - O(1) - C(1) \\ &C(3) + C(2) - C(3) \\ &C(1) - C(1) - C(1) \\ &C(3) + C(2) - C(3) \\ &C(1) - C(1) - C(1) \\ &C(3) + C(2) - C(3) \\ &C(1) - C(1) - C(1) \\ &C(3) + C(2) - C(3) \\ &C(1) - C(1) - C(1) \\ &C(3) + C(2) - C(3) \\ &C(1) - C(1) - C(1) \\ &C(3) + C(2) - C(3) \\ &C(1) - C(1) - C(1) \\ &C(3) + C(2) - C(3) \\ &C(1) - C(1) - C(1) \\ &C(3) + C(2) - C(3) \\ &C(1) - C(1) - C(1) \\ &C(3) + C(2) - C(3) \\ &C(1) - C(1) - C(1) \\ &C(3) + C(2) - C(3) \\ &C(3) - C(2) - C(3) \\ &C(3) - C(3) \\$	$\begin{array}{c} 179.20(16)\\ 2.2(3)\\ -1.8(3)\\ 0.0(3)\\ 1.3(3)\\ -176.83(16)\\ -0.9(3)\\ -178.06(15)\\ -0.9(2)\\ -2.2(2)\\ 174.99(15)\\ -28.8(2)\\ 153.19(17)\\ 94.46(17)\\ -83.5(2)\\ -166.81(14)\\ 157.90(16)\\ -25.1(2)\\ -13.5(3)\\ 163.56(15)\\ -79.18(18)\\ 38.1(2)\\ 92.33(18)\\ -150.34(15)\\ -177.47(17)\\ 4.5(2)\\ -171.83(15)\\ 12.3(2)\\ -165.02(15)\\ -86.79(17)\\ \end{array}$
$\begin{array}{c} C(9)-C(4)-N(2)-C(3)\\ C(11)-C(10)-0(1)-C(2)\\ N(1)-C(2)-0(1)-C(10)\\ C(3)-C(2)-0(1)-C(10)\\ C(10)-C(11)-0(2)-C(12)\\ C(13)-C(12)-0(2)-C(11) \end{array}$	$12.3(2) \\ -165.02(15) \\ -86.79(17) \\ 152.98(13) \\ -178.10(17) \\ -175.76(19)$

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z+2

Datablock: I

Bond precisio	on: $C-C =$	0.0026 A	Wavelength=(0.71073
Cell:	a=8.6751(8)	b=11.2503(10)	c=13.3424(10)	
	alpha=90	beta=94.681(7)	gamma=90	
Temperature:	180 K			
	Calculat	ed	Reported	
Volume	1297.84(19)	1297.84(19)
Space group	P 21/a		P 21/a	
Hall group	-P 2yab		-P2yab	
Moiety formul	La C26 H34	N4 O4	C26 H34 N4	04
Sum formula	C26 H34	N4 O4	C26 H34 N4	04
Mr	466.57		466.57	
Dx,g cm-3	1.194		1.194	
Z	2		2	
Mu (mm-1)	0.081		0.081	
F000	500.0		500.0	
F000'	500.21			
h,k,lmax	11,14,17		11,14,17	
Nref	2974		2890	
Tmin,Tmax	0.981,0.	992		
Tmin'	0.976			
Correction me	ethod= Not give	en		
Data complete	eness= 0.972	Theta(max)=	= 27.453	
R(reflections	s = 0.0498 (162)	22) wR2(ref.	lections) = 0.1460 (2890)
S = 0.878	Npar=	= 157		

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

•Alert level C

PLAT761_ALERT_1_C CIF Contains no X-H Bonds	Please
Check PLAT762_ALERT_1_C CIF Contains no X-Y-H or H-Y-H Angles Check	Please

Alert level G

PLAT128_ALERT_4_G Alternate Setting for Input Space (Group P21/a	P21/c
Note		
PLAT793_ALERT_4_G The Model has Chirality at C2 ((Centro SPGR)	S
Verify		

0 ALERT level A = Most likely a serious problem - resolve or explain

0 ALERT level B = A potentially serious problem, consider carefully

2 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight

2 ALERT level G = General information/check it is not something unexpected

<u>C. Structural parameters of 1²⁺, 1(OH)₂^β and 1(OR)₂ (R=Me, Et and EtOEt).</u>

In all asymmetric units, the organic part is made of two equivalent half moieties related by an inversion centre, which are of *N*-methylquinoxalinium, 2-hydroxy-1-methyl-1,2-dihydroquinoxaline and 2-methoxy-1-methyl-1,2-dihydroquinoxaline type for 1^{2+} , $1(OH)_2^{\beta}$ and $1(OMe)_2$ respectively. All atoms including hydrogens were identified from Fourier difference maps. All atoms occupy general positions.

The structure of the dication 1^{2+} is made of a fully aromatic π -conjugated system with full electron delocalization. The average C–C bond length in the benzene ring is of about 1.39-1.40 Å and C–C and C–N bond distances in the pyrazinium moiety are of about 1.41Å and 1.32–1.40 Å respectively. In spite of the rotation freedom around the central C₃–C₃' bond, 1^{2+} is perfectly planar with a *trans*-geometry (ϕ =180°), the dihedral angle being defined such as ϕ =N₂–C₃–C₃–N₂.

Both $1(OH)_2^\beta$ and $1(OMe)_2$ are isostructural and can be described as originating from the planar *trans*dication 1^{2+} , with a subsequent nucleophilic addition of either the hydroxide or methoxide anions only on C₂ and C₂' atoms. Consequently, while keeping the same *trans*-conformation geometry (ϕ =180° for all), the C₂ and C₂' atoms lose their sp² character becoming sp³, with the C₂–O₁ (C₂'–O₁') bonds being almost perpendicular to the mean plane of the molecules (see γ angles in Table S1). These are in line with a significant increase of the N₁–C₂ (N₁'–C₂') and C₂–C₃ (C₂–C₃') bond distances to d=1.428 (2) Å (+0.12 Å) and to d=1.503 (2) Å (+0.1 Å) respectively, and with C₂(C₂')-centred angles values close to 109.4° (Table S1), as compared to 1^{2+} . Furthermore, due to their asymmetric environment C₂ and C₂' define two chiral centres (their absolute configurations are here chosen as C₂ (S) and C₂' (R)) which are related by an inversion centre between the C₃–C₃' central bond so that the whole molecules remain achiral.

The presence of these two sp³ carbons also disrupt the planarity of the molecules. Indeed, whereas 1^{2+} is fully planar, in $1(OH)_2^\beta$ and $1(OMe)_2$, the "*N*-methylpyrazine" cores adopt a distorted geometry which vary depending on the OR substituent (Table S1 and S2). For a precise description and comparison, some specific parameters such as the offset distances of N₁, N₂ and C₃ from the benzene planes (d_x-plane with X=N₁, N₂, C₃) and the deviation angle (δ) between the vector C₁-N₁ and the benzene plane have been also identified. Regarding the environment around the oxygen atom, the C₂-O₁-R angle (α) and the dihedral N₁-C₂-O₁-R angle (β) have been also reported. Globally for all $1(OH)_2^\beta$ and $1(OR)_2$ compounds, N₁ atom exhibits no offset (0.002(1) Å <d_{N1-plane}< 0.090(1) Å) but its π -orbital can slightly deviates from the π -conjugated plane (4°<δ<14°). N₂ and C₃ atoms can strongly deviate from the benzene planes with 0.064(1) Å <d_{N2-plane}< 0.192(1) Å and 0.026(1) Å <d_{C3-plane}< 0.186(1) Å). From the previous parameters, nevertheless no real common difference can be observe between $1(OH)_2^\beta$ and $1(OR)_2$ species, instead of the fact that more the length of the **R** substituent increase, better planar is the whole π -conjugated system. However, regarding the only of the **R** substituent increase, better planar is the whole π -conjugated system. However, regarding the is tighter with α =106.3°.

Scheme of the common structure of $1(OH)_{2^{\beta}}$ and $1(OR)_{2}$. (Top) Basic skeleton of the molecule introducing important atoms labels and the dihedral angle ϕ = abs (N₂-C₃-C₃'-N₂'). (Middle) Projection along the N₁-C₁ vector and collinear to the benzene moieties (C₄ to C₉); Important distance parameters are reported. (Down) View of half of the molecule where important angles are reported (complete definition of the angle in Table S1).

Table S1: Specific parameters (distance in Å, angle in degree) of 1²⁺, 1(OH)₂^β, 1(OMe)₂, 1(OEt)₂ and 1(OEtOEt)₂.

	1 ²⁺¹	1(OH) ₂ ^β	1(OMe) ₂	1(OEt) ₂	1(OEtOEt) ₂
d _{plane-plane} ,[a]	0.177 (2)	0.284 (1)	0.258 (1)	0.160 (1)	0.038 (1)
d _{N1} -plane	0.018 (1)	0.002 (1)	0.090(1)	0.030(1)	0.022 (1)
d _{C2} -plane	0.009 (1)	0.665 (1)	0.638 (1)	0.513(1)	0.469 (1)
d _{C3} -plane	0.055 (1)	0.186 (1)	0.026 (1)	0.129 (1)	0.089 (1)
$d_{N_2\text{-plane}}$	0.038 (1)	0.081 (1)	0.192 (1)	0.064 (1)	0.083 (1)
d _{O1} -plane		2.077 (1)	2.047 (1)	1.948 (1)	1.902 (1)
$\alpha^{[b]}$		106.3 (1)	113.7(1)	115.4 (1)	114.3 (1)
β ^[c]		80.7 (1)	73.2 (1)	93.6(1)	86.7 (1)
$\gamma^{[d]}$		7.0(1)	9.5 (1)	1.5 (6)	4.8 (1)
δ ^[e]		4.1 (1)	3.8 (1)	14.0(1)	13.9 (1)
$\phi^{[f]}$	180	180	180	180	180

^[a] Plane defined by the benzene rings (C₄-C₉ and C₄'-C₉')

^[b] Angle defined as α =abs (C₂-O₁-R)

^[c] Dihedral angle defined as β =abs (N₁-C₂-O₁-R)

^[d] Angle between vector C_2 - O_1 and the normal of the benzene plane

^[e] Deviation angle between vector C_1 - N_1 and the benzene plane

^[f] Dihedral angle defined as ϕ =abs (N₂-C₃-C₃'-N₂')

Table S2: Main	Geometrical	parameters	(distance	in Å,	angle in	n degree)	of 1 ²⁺ ,	$1(OH)_2^{\beta}$,	1(OMe) ₂ ,	1(OEt) ₂	and
			1	l(OE	tOEt) ₂ .						

	1 ²⁺¹	1(OH) ₂ ^β	1(OMe) ₂	1(OEt) ₂	1(OEtOEt) ₂
C_1-N_1	1.476	1.456 (2)	1.450 (2)	1.452 (2)	1.452 (2)
C_9-N_1	1.383	1.376 (2)	1.378 (2)	1.373 (2)	1.373 (2)
C_8-C_9	1.402	1.397(2)	1.400 (2)	1.403 (2)	1.400 (3)
C_7-C_8	1.368	1.378(2)	1.383 (2)	1.377 (3)	1.370 (3)
C_6-C_7	1.404	1.390 (3)	1.394 (3)	1.373 (3)	1.387 (3)
C_5-C_6	1.366	1.374 (2)	1.381 (2)	1.382 (3)	1.376 (3)
C_5-C_4	1.415	1.391 (2)	1.398 (2)	1.393 (2)	1.389 (2)
C_4-C_9	1.416	1.416 (2)	1.412 (2)	1.414 (2)	1.413 (2)
C_4-N_2	1.352	1.399 (2)	1.396 (2)	1.396 (2)	1.396 (2)
N_2-C_3	1.315	1.293 (2)	1.293 (2)	1.292 (2)	1.293 (2)
N_1-C_2	1.311	1.430 (2)	1.435 (2)	1.426 (2)	1.424 (2)
C_3-C_2	1.410	1.511 (2)	1.507 (2)	1.500 (2)	1.497 (2)
$C_3 - C_3'$	1.476	1.462 (2)	1.462 (2)	1.466 (2)	1.463 (2)
C_2-O_1		1.423 (2)	1.429 (2)	1.435 (1)	1.439 (2)
O_1 -R		0.908 (24)	1.421 (2)	1.417(2)	1.414 (2)
		N hybrid	lization		I
	110 7 (1)	\mathbf{N}_1 Hydric		101 7 (1)	121.0 (1)
C_1 - N_1 - C_9	119.7(1)	120.1 (1)	120.8 (1)	121.7(1)	121.0(1)
$C_1 - N_1 - C_2$	119.8 (1)	117.9(1)	119.8 (1)	119.3 (1)	119.5 (1)
$C_9-N_1-C_2$	120.4 (1)	116.2 (1)	116.8 (1)	118.0 (1)	118.8 (1)
<angle> =</angle>	119.9 (1)	118.0 (1)	118.9 (1)	119.6 (1)	119.8 (1)

¹ N. Leblanc, S. Sproules, K. Fink, L. Sanguinet, O. Aleveque, E. Levillain, P. Rosa, A. K. Powell, Chem. Sci. 2016. DOI. 10.1039/C5SC04904K

		C2 hybri	dization		
N_1 - C_2 - H_2	117.1 (1)	107.3 (8)	106.7 (9)	108.2 (7)	109.2 (1)
$N_1 - C_2 - C_3$	119.8 (1)	108.4 (1)	108.2 (1)	109.5 (1)	109.8(1)
$H_2-C_2-C_3$	122.9(1)	110.9 (7)	112.2 (9)	111.8 (7)	109.2 (1)
$C_3 - C_2 - O_1$		105.6(1)	104.8 (1)	104.7 (1)	104.6(1)
$N_1-C_2-O_1$		113.7 (1)	114.5 (1)	113.8(1)	114.4 (1)
$H_2-C_2-O_1$		110.6 (8)	110.2 (1)	108.7 (8)	109.2 (1)
<angle> =</angle>	119.9 (1)	109.4 (1)	109.4 (1)	109.4 (1)	109.4 (1)
		~			I.
$C_2-C_3-N_2$	122.6(1)	121.1 (1)	121.6(1)	123.5 (1)	123.7 (1)
$C_2 - C_3 - C_3'$	119.2 (1)	119.0(1)	119.0(1)	117.5 (1)	117.5 (1)
$N_2 - C_3 - C_3'$	118.1 (1)	119.7 (1)	119.2 (1)	118.8 (1)	118.7 (1)
<angle> =</angle>	119.9(1)	119.9 (1)	119.9 (1)	119.9 (1)	119.9 (1)
		N. hybrid	ization		
C ₃ -N ₂ -C ₄	117.4 (1)	118.1 (1)	117.1 (1)	117.5 (1)	117.7 (1)

D. Additional UV-Vis, Fluorescent, NMR and IR studies

Absorption peak λ_{max}	H ₂ O	MeCN	DCM
1 ²⁺	449 nm	440 nm	441 nm
1(OH) ⁺	360 nm	360 nm	368 nm
1(OH) ₂	490 nm	500 nm	540 nm

Table S3: Absorption maxima of 1²⁺, 1(OH)⁺ and 1(OH)₂ in different solvent (H₂O, MeCN and DCM)

Figure S1: Excitation spectrum of 1²⁺ in dilute acetonitrile solution (emission wavelength 500 nm, black solid line) and emission spectrum (excitation wavelength 330 nm, dashed line).

Figure S2: Fluorescence decay curves of the dication 1^{2+} in acetonitrile solution (green) and of the bis- σ^{H-} adduct $1(OMe)_2$ in acetonitrile dilute solutions (black) and in solid state (red).

Figure S3: Emission spectra of bis- σ^{H} - adduct **1(OMe)**₂ in acetonitrile dilute solutions (1*10⁻⁵M, red line) and in the solid state (black line), excitation wavelength 410 nm.

Figure S4: Solution state UV-Visible spectra of 1(OH)₂^β, 1(OMe)₂, 1(OEt)₂ and 1(OEtOEt)₂

Figure S5: Solid state UV-Visible spectra of $1(OH)_2^{\beta}$, $1(OMe)_2$, $1(OEt)_2$ and $1(OEtOEt)_2$

R =	OEt	OEt	OEtOEt	OEtOEt	
	К –	(MeCN)	(SS)	(MeCN)	(SS)
	Φ_{fluo}	0.67	0.15	0.59	0.16

Table S4: Quantum yields of the bis- σ^{H} - adducts **1(OR)**₂ (R=Et, OEtOEt), in acetonitrile dilute solutions (1*10⁻⁵M, MeCN) and in solid state (SS).

Figure S6: Absorption (left) and emission (right) spectra of titration of **1(OMe)**₂ with HCl (in Et₂O, diluted in Acetonitrile, to avoid presence of water). The 2-steps mechanism is highlighted by the absorption and emission trends at individual wavelengths (bottom graphs, left and right respectively).

Figure S7: UV-Vis spectrum of $1(OD)^+$ (1²⁺ dissolved in D₂O at pH=6.46 – pink solid line) and $1(OMe)^+$ (1²⁺ dissolved in MeOH-d₄ – pink dashed line) overlaid with the spectra of 1²⁺ (black solid and dashed lines) after mild acidification. The spectra of the neutral bis- σ^{H} -adduct $1(OMe)_2$ (orange solid line) and dipseudobase $1(OH)_2$ (orange dashed line) have been added for comparison.

Figure S8: (a) Overlay of the NMR spectra of 1²⁺ dissolved in D₂O at different pH (using Na₃PO₄) showing the appearance of the monopseudobase 1(OD)⁺, as the major product, by increasing the pH. (b) NMR spectrum of 1²⁺ dissolved in D₂O at pH=6.46 showing the typical signature of the monopseudobase 1(OD)⁺, as the major product. (c) NMR spectrum of the solution used in (b) after in situ mild acidification (1.5mL H₂SO₄ 97%), showing the typical signature of the dication 1²⁺. (d) NMR spectrum of 1²⁺ dissolved in MeOH-d₄ showing the typical signature of the mono-σ^H-adduct 1(OMe-d₃)⁺, as the major product. (e) NMR spectrum of the solution used in (d) after in situ mild acidification (1.5mL H₂SO₄ 97%), showing the typical signature of the dication 1²⁺.

Scheme S1: Complete view of the different pH-dependent species identified and their corresponding equilibria in solution: 1^{2+} , $1(OH)^+$, $1(OH)_2$, $1(OMe)^+$ and $1(OMe)_2$. The sixth hypothetical species, the mixed bis- σ^{H} -adduct 1(OH)(OMe), is also represented.

Figure S9: Solid state infrared spectra of 1(OH)₂^β, 1(OMe)₂, 1(OEt)₂ and 1(OEtOEt)₂

E. Experimental details

Single crystals X-Ray diffraction data of $1(OH)_2^{\beta}$, $1(OMe)_2$, $1(OEt)_2$ and $1(OEtOEt)_2$ were collected at 180 K on a STOE IPDS II diffractometer equipped with a graphite monochromatised Mo K α radiation ($\lambda = 0.71073$ Å), and mounted with an Oxford Nitrogen Cryostream. Structures were solved and refined using the Shelx12013² and WingX2013³ packages and molecular diagrams were prepared using Diamond 3.2k.⁴ Positions, atomic displacement parameters, and hydrogens were refined by full-matrix least-squares routines against F².

Photophysical measurements. Absorption spectra were measured on a Shimadzu UV-3600 double-beam UV–VIS–NIR spectrophotometer and baseline corrected. Steady-state emission and excitation spectra and time resolved emission decays were recorded on a Picoquant FT300 fluorometer with a 450 W xenon arc lamp, and a 375nm diode laser, respectively. Emission and excitation spectra were corrected for source intensity (lamp and grating) and emission spectral response (detector and grating) by standard correction curves. The absolute photoluminescence quantum yields (PLQY) and the solid state emission spectra were measured on a Hamamatsu Quantaurus-QY integrating sphere in air-equilibrated condition using an empty quartz tube as a reference.

Procedure for the polymer functionalization: 200 μ L of 1mM of the oligomers and polymers in acetonitrile (concentration of hydroxyl terminations) were mixed with 50 μ L of 0.5mM 1(OH)₂ in acetonitrile solution, and allowed to react overnight to ensure that kinetics were also allowed for slowly diffusing polymers (though luminescence is mostly observed within few minutes). A blank was prepared by mixing 50 μ L of 0.2mM of 1(OH)₂ in acetonitrile solution with 200 μ L of acetonitrile. Then, 100 μ L of the reaction crude was diluted in 2 mL of acetonitrile and absorption, emission, excitation spectra and emission decays were measured.

² G. Sheldrick, Acta Cryst. A, 2008, 64, 112-122

³ L. Farrugia, J. Appl. Cryst., 2012, 45, 849-854

⁴ H. Putz and K. Brandenburg, Diamond - Crystal and Molecular Structure Visualization, Kreuzherrenstr. 102, 53227 Bonn, Germany