Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supplementary information

Systematic computational study of the structure crossover and coordination number distribution of metallic nanoparticles

Alexander V. Myshlyavtsev, ab‡ Pavel V. Stishenko, *a‡ and Anna I. Svalova a‡

^a Omsk State Technical University, prospekt Mira 11, Omsk 644050, Russia. Fax: +7 3812 652379; Tel: +7 3812 652379;
 E-mail: PavelStishenko@yandex.ru
 ^b Institute of Hydrocarbons Processing SB RAS, 54 Neftezavodskaya, Omsk 644040, Russia

Element	icosahedral				decahedral				cuboctahedral			
	e_c	e_f	e_e	e_v	e_c	e_f	e_e	e_v	e_c	e_f	e_e	e_v
Ag	-2.9912	1.7304	2.0181	-5.9351	-2.9828	1.3930	4.7231	-11.7567	-2.9993	1.8185	1.5863	-4.6228
Au	-3.8197	1.4928	0.4702	-0.8693	-3.8171	1.1933	2.4985	-5.6404	-3.8261	1.3705	1.3995	-3.2906
Cu	-3.6576	3.2388	0.6105	-6.1253	-3.6562	3.1123	1.9252	-8.6539	-3.6679	3.4489	-0.7110	-2.1156
Ir	-7.0074	4.3106	4.6913	-13.5736	-6.9679	2.9872	15.4022	-38.9537	-7.0175	4.2101	6.1074	-16.1670
Ni	-4.6510	4.1274	0.6586	-7.4223	-4.6426	3.8540	2.7985	-10.9699	-4.6641	4.3838	-0.8785	-2.7799
Pd	-3.9409	2.3573	2.6676	-7.7386	-3.9362	2.1031	4.3103	-9.7462	-3.9539	2.5032	1.9038	-5.4681
Pt	-5.8515	2.4982	4.3925	-11.5405	-5.8524	2.3292	4.9177	-10.7452	-5.8555	2.3258	5.4823	-13.0532
Rh	-5.9830	5.3364	2.1774	-12.5484	-6.0000	5.5521	1.2601	1.2601	-6.0050	5.7122	-0.0742	-5.7895

Table S1 Approximation coefficients

Fig. S1 Residuals plot for cuboctahedral (crystalline) structure motif of all metals.

Fig. S2 Residuals plot for icosahedral structure motif of all metals.

Fig. S3 Residuals plot for icosahedral, decahedral and cuboctahedral structure motifs of Rh nanoparticles.

MC Step	Т, К	MC Step	Т, К	MC Step	Т, К	MC Step	Т, К
5	3000	315	1830	625	1140	935	500
10	2900	320	1820	630	1130	940	490
15	2850	325	1810	635	1120	945	490
20	2800	330	1800	640	1110	950	480
25	2750	335	1790	645	1100	955	480
30	2700	340	1770	650	1090	960	470
35	2650	345	1760	655	1070	965	470
40	2600	350	1750	660	1060	970	460
45	2550	355	1740	665	1050	975	460
50	2500	360	1730	670	1040	980	450
55	2450	365	1720	675	1030	985	450
60	2400	370	1710	680	1020	990	440
65	2390	375	1700	685	1010	995	440
70	2370	380	1690	690	1000	1000	430
75	2360	385	1670	695	990	1005	2450
80	2350	390	1660	700	980	1010	2400
85	2340	305	1650	705	970	1015	2300
00	2330	400	1640	710	960	1020	2370
95	2320	405	1630	715	950	1025	2370
100	2320	410	1620	720	940	1020	2350
105	2310	/15	1610	725	030	1035	2330
105	2300	420	1600	720	930	1035	2340
115	2290	425	1500	735	010	1040	2330
110	22/0	420	1570	735	000	1045	2220
120	2200	430	1560	740	800	1050	430
120	2230	440	1550	750	870	1055	420
135	2240	440	1540	755	860	1065	420
135	2230	450	1520	755	850	1005	410
140	2220	450	1530	765	840	1070	410
145	2210	455	1520	703	040	1075	410
150	2200	400	1510	770	030	1000	400
155	2190	403	1400	7790	020	1005	200
100	21/0	470	1490	700	010	1090	390
105	2100	4/5	14/0	/05	000 700	1095	390
170	2150	400	1400	790	790	1100	200
1/5	2140	485	1450	/95	770	1105	380
100	2130	490	1440	800 80E	760	1110	370
100	2120	495	1430	005	750	1115	3/0
190	2110	500	1420	010	740	1120	300
195	2100	505	1410	015	/30	1125	300
200	2090	510	1400	020	720	1100	350
205	2070	515	1390	825	710	1135	350
210	2000	520	13/0	030	/00	1140	340
215	2050	525	1300	835	670	1145	340
220	2040	530	1350	840	0/0	1150	330
225	2030	535	1340	845	000	1155	380
230	2020	540	1330	850	640	1160	3/0
235	2010	545	1320	855	620	1105	3/0
240	2000	550	1310	860	030	1170	360
245	1980	555	1300	805	620	11/5	360
250	19/0	560	1290	8/0	610	1180	350
255	1960	565	1270	875	600	1185	350
260	1950	570	1260	880	590	1190	340
205	1940	5/5	1250	885	5/0	1195	340
270	1930	580	1240	890	560	1200	330
2/5	1920	585	1230	895	550	1205	330
280	1910	590	1220	900	540	1210	320
285	1900	595	1210	905	530	1215	320
290	1890	000	1200	910	520	1220	310
295	18/0	605	1190	915	520	1225	310
300	1860	610	11/0	920	510	1230	300
305	1850	615	1160	925	510		
310	1840	620	1150	930	500		

 Table S2 Simulated annealing schedule - change of temperature T with Monte Carlo (MC) steps. See graph in Fig. S11.

Fig. S4 Ratio of number of atoms with coordination numbers equal to 9 to number of all surface atoms (p9) as a function of nanoparticle size

Fig. S5 Ratio of number of atoms with coordination numbers equal to 10 or 11 to number of all surface atoms (p_{10+11}) as a function of nanoparticle size

Fig. S6 Ratio of number of atoms with coordination numbers less or equal to 6 to number of all surface atoms ($p_{\leq 6}$) as a function of nanoparticle size

Fig. S7 Distribution of the coordination numbers of surface atoms of Au NPs in the vicinity of decahedral-cuboctahedral transition

Fig. S8 Distribution of the coordination numbers of surface atoms of Rh NPs in the vicinity of icosahedral-decahedral transition.

Fig. S9 Au NP of 3000 atom in icosahedral lattice. Small white dots indicate free lattice vacancies.

Fig. S10 Au NP of 3000 atom in decahedral lattice. Small white dots indicate free lattice vacancies.

Fig. S11 Energy (E) and temperature change during simulated annealing optimization of decahedral Pt NP of 1340 atoms. See temperature values in Table S2.