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1 Relation between pressure derivative of pair correlation func-

tion with triplet correlation function

Herein we provide step-wise derivation of the relation between pressure derivative of pair corre-

lation function with triplet correlation function presented in the main article. As shown in the

main text of the article that for a system of N particles with positions given by 3N -dimensional

vector r
N , the pair and triplet density functions are related as:1–4

∫

ρ
(3)
N (r1, r2, r3)dr3 = (N − 2)ρ

(2)
N (r1, r2), (S1)

where ρ
(3)
N and ρ

(2)
N are the triplet and pair density functions, respectively.

As the change in external pressure leads to a change in number of atoms in a given volume,

to discuss these changes we should consider the problem in the grand canonical ensemble. We

can rewrite the above equation as

∫

〈ρ(3)N (r1, r2, r3)〉dr3 + 2〈ρ(2)N (r1, r2)〉 = 〈Nρ
(2)
N (r1, r2)〉 (S2)

where 〈· · · 〉 denotes the averages over the distribution of molecules in a given volume V . As

in the real scenario 〈N〉 → ∞, the above equation becomes indeterminate and therefore it is

rewritten as

∫

[

〈ρ(3)N (r1, r2, r3)〉 − ρ〈ρ(2)N (r1, r2)〉
]

dr3 + 2〈ρ(2)N (r1, r2)〉 = 〈Nρ
(2)
N (r1, r2)〉 − 〈N〉〈ρ(2)N (r1, r2)〉

(S3)

where ρ is the number density represented by ρ = 〈N〉/V . The right hand side of the above

equation can be calculated from the fluctuation in the product of number of atoms with the pair

density function and is readily expressed in terms of activity, z = 1
Λ3 exp(βµ), and differentiation

of pair density function with respect to the activity (z)

z
∂〈ρ(2)N (r1, r2)〉

∂z
= 〈Nρ

(2)
N (r1, r2)〉 − 〈N〉〈ρ(2)N (r1, r2)〉 (S4)

where, Λ = h/
√
2πmkBT , is the thermal de Broglie wavelength and µ is the chemical potential.

The above relation can be established by the following way: In the grand canonical ensemble,

if p(N) is the probability that at equilibrium a system of the ensemble contains precisely N

particles irrespective of their coordinates and momenta and Ξ is the grand-canonical partition

function, then n-particle density is defined in terms of its canonical ensemble counterparts as

S2



the sum4

〈ρ(n)N (rn)〉 =
∞
∑

N≥n

p(N)ρ
(n)
N (rn) (S5)

=
1

Ξ

∞
∑

N=n

zN

(N − n)!

∫

exp(−βUN (rn))dr(N−n) (S6)

So the two-particle density in the grand-canonical ensemble can be written as

〈ρ(2)N (r1, r2)〉 =
1

Ξ

∞
∑

N=2

zN

(N − 2)!

∫

exp(−βUN (rn))dr(N−2) (S7)

Now if we differentiate it with respect to z and multiply with z

z
∂〈ρ(2)N (r1, r2)〉

∂z
=

1

Ξ

∞
∑

N=2

N
zN

(N − 2)!

∫

exp(−βUN (rn))dr(N−2)

− 1

Ξ

∞
∑

N=2

zN

(N − 2)!

∫

exp(−βUN (rn))dr(N−2)

×∂ ln Ξ

∂ ln z
(S8)

= 〈Nρ
(2)
N (r1, r2)〉 − 〈N〉〈ρ(2)N (r1, r2)〉, (S9)

as in the grand canonical ensemble it has been proved that the average number of particle in

the system is4

〈N〉 = 1

Ξ

∞
∑

N=0

zN

N !
ZN =

∂ ln Ξ

∂ ln z
. (S10)

Use of the standard thermodynamic relationship (∂z/∂P )T = z/ρkBT leads to the equation

z
∂〈ρ(2)N (r1, r2)〉

∂z
= z

(

∂〈ρ(2)N (r1, r2)〉
∂P

)

T

(

∂P

∂z

)

T

(S11)

= ρkBT

(

∂〈ρ(2)N (r1, r2)〉
∂P

)

T

. (S12)

Combining Eqns. ( (S3)), ( (S4)) and ( (S12)) we can express the pressure derivative

ρkBT

(

∂〈ρ(2)N (r1, r2)〉
∂P

)

T

=

∫

{

〈ρ(3)N (r1, r2, r3)〉 − ρ〈ρ(2)N (r1, r2)〉
}

dr3

+2〈ρ(2)N (r1, r2)〉. (S13)

A more convenient way to write the above equations is to use the corresponding correlation

functions instead of the density functions.4 For a homogeneous, isotropic fluid, the correlation

functions can be written as a function of three relative distances, r = |r| = |r2 − r1|, s = |s| =
|r3−r1| and t = |s−r|. By the use of ρ(3)N (r1, r2, r3) = ρ3g(3)(r, s, t) and ρ

(2)
N (r1, r2) = ρ2g(2)(r),4

the above expression will be

S3



ρkBT

(

∂ρ2g(2)(r)

∂P

)

T

= ρ3
∫

{

g(3)(r, s, t)− g(2)(r)
}

ds+ 2ρ2g(2)(r). (S14)

On differentiation of the left-hand side of the above equation,

ρkBT

(

∂ρ2g(2)(r)

∂P

)

T

= 2ρ2kBTg
(2)(r)

(

∂ρ

∂P

)

T

+ ρ3kBT

(

∂g(2)(r)

∂P

)

T

, (S15)

and putting it into the Eqn. ( (S14)), we get the relation between pair and triplet correlation

functions in the form5

ρ

∫

{

g(3)(r, s, t)− g(2)(r)
}

ds+2g(2)(r)

{

1− kBT

(

∂ρ

∂P

)

T

}

− ρkBT

(

∂g(2)(r)

∂P

)

T

= 0, (S16)

This is one of the most important relations in the theory of liquids originally derived by Schofield5

and later used by several other groups.

2 Comparison with the existing experimental literature data of

liquid Neon on triplet correlation functions using molecular

dynamics simulations

2.1 Molecular dynamics details of simulation of liquid neon

To reproduce the experimental results on triplet correlation function existed in the literature of

liquid neon, we have performed molecular dynamics simulations taking 8192 particles in a cubic

simulation box using Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

package. Lennard-Jones interatomic potential with standard energy and length scale parameters

for neon i.e. ǫ = 36.82 K and σ = 2.789 Å were used in the liquid state. Molar mass of the

particle was taken to be 20.1797 amu. All the simulations were carried out under isothermal

isobaric ensemble (NPT) condition. The temperature (35.05 K) and pressure (21.4 atm, 79.0 atm

and 140 atm) for which we have calculated structure factor and corresponding triplet function

are taken from Ref. 6. To integrate the equation of motion in MD simulation, velocity-Verlet

algorithm is used. The temperature and pressure were maintained using Nose-Hoover thermostat

and barostat, with time constants of 0.5 ps and 1 ps, respectively. At each pressure, the systems

were initially equilibrated for 10 ns and then production runs were carried out for 10 ns. During

the production runs, the configurations were stored every 500 MD steps. Structure factor at

the aforementioned state-points were calculated using FT method as well as direct method

mentioned in the method section of the main article ( see Eqns. (17) and (19)). Then full triplet

function and its all components at different mean pressures, Pm = (P1 + P2)/2 (50.2 atm, 80.7

S4



atm and 109.5 atm) were calculated using Eqns. (20)-(23) mentioned in the main article. To

calculate the H2(q) component of the full triplet function, S(0) values were calculated from the

values of isothermal compressibility (see Table S1) similar to the case of water we followed.

Table S1 The limiting value S(0) for q → 0 for liquid neon at 35.05 K and different pressures in molecular

dynamics simulation. The value of S(0) calculated from isothermal compressibility is denoted as S(0)κT (see

Eqn. (28) in the main article) while from the direct method (see Eqn. (19) in the main article) is denoted by

S(0)Direct. In direct method, S(0) were calculated by extrapolating the corresponding structure factor from

accessible qmin to the q → 0 region. Number density at three different pressures are denoted by ρN .

Pressure(atm) ρN (N/Å3
) S(0)κT S(0)Direct

50.2 0.03465 0.104190 0.107922

80.7 0.03526 0.089458 0.098288

109.5 0.03578 0.081402 0.082971

The comparison to the existing literature results were performed to substantiate our method

of calculations of H̃(q) and its three components. To our knowledge, for liquid neon there

are no molecular dynamics results about triplet correlation functions using Egelstaff’s approach

available, so we compared our MD simulation results the experimental data.
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2.2 Three components of triplet function of neon at 50.2 atm
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Figure S1 Comparison of all components (H1(q), H2(q) and H3(q)) of full triplet function (H̃(q)) calculated

from molecular dynamics simulations with that of experimental results by Waseda et al.
6 for neon at 35.05 K

temperature and 50.2 atm pressure ((a), (b) & (c)). In part (d), contribution of three components of H̃(q)

for liquid neon obtained from MD simulation at the same temperature and pressure is compared.
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2.3 Full triplet function of liquid neon at different pressure
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Figure S2 Full triplet functions (H̃(q)) obtained in our MD simulations at 35.05 K temperature and at (a)

50.2, (b) 80.7 and (c) 109.5 atm pressure with the experimental data given in Ref. 6.
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3 Oxygen-oxygen structure factor of water at different pressure
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Figure S3 Change on peak and pre-peak intensity of O-O structure factor on application of pressure in (a)

simulation using TIP4P/2005 water model and (b) experiment.
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4 Three components of full triplet function (H̃(q)) in water at

different pressure
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Figure S4 Behavior of each component (H1(q), H2(q) and H3(q)) of full triplet function, H̃(q) in water

(TIP4P/2005 water model) at 298 K temperature and (a) 500.5 bar, (b) 1510 bar (c) 2519 bar and (d) 3319

bar pressure.
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