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1 The total position spread tensor

Let 7; the vector position of the i** electron of a N-electron molecule, ¥ the multielectron
wavefunction, and
N
R=> . (1)
i

The total position spread (TPS) tensor is defined as [1, 2]
A =(VIR® R|Y) — (V|R|V) ® (V|R|V) = (R® R) — (R) ® (R). (2)

Here, bold fonts are used to indicate vectors or tensors, depending on the context, and the
® symbol stands for a tensor or cartesian product. For example, the cartesian components
of the » ® r tensor are (r ® 1), = 7,7, and the six independent components of the
symmetric A are

Aab = Aba = <XaXb> - <Xa><Xb>> a, b= x,y,z. (3)

A is a cumulant and size extensive.

2 The total position spread tensor from reduced den-
sity matrices

Using Eq. 1 and R@ R = Zf\;j 7 Q7 + ZZN 7; ® 7; in Eq. 2, and taking into account
electron indistinguishability, A becomes

A =N(N—1)(V|f @ Fo|U) + N(V|P) @ 71 |¥) — N(U|7# | V) @ N(U|7|P).  (4)
Now, we use the definition of the first order, p(r;), and the second order, po(7,72),
spinless densities, which are nothing but the electron density and the pair density, re-
spectively:
p(ry) = N/d01d$2 o de UV,
pg(’rl, r2) = N(N — 1) / dO’ldO'QdCCg cee dCCN\I/*‘P, (5)
where x; = r;0; is the space-spin coordinate of electron ¢. Then,
A = /drldrg('ﬁl ® 7q) pa(T1, T2) —l—/dm('f"l ® 71)p(71)

— /d'rl'ﬁl p(ry) ®/d'r2 Tap(T2). (6)

The above equation may be notably simplified by using ps (71, 72) = p(71)p(72) — pre(T1, T2),
where p,. is the exchange-correlation density, the part of the pair density containing all



pure quantum mechanical effects. Using this expression for ps in Eq. 6, the part of
p(r1)p(ry) compensates the third term, and A results

A=— / d’l"ld’l‘g(’f'l X 'f'z) pxc(rl, 7"2) + d'f‘l ('f'l & 'f'l) p(’l‘l). (7)

If we now use the key identity p(r1) = [ drapy.(r1,72) in the second integral of Eq. 7, we
obtain

A = /d’l’ld’f’z (11 @ (1 — 72)] pac(r1, T2), (8)

= /d’l‘ld’l"g [’I"z & (7'2 - 7'1)] p:}cc('rla 7'2); (9)

where the last equation arises as a consequence of the invariance of A with respect to
the r1 <> 79 exchange and the equality p.(ra, 1) = puc(r1,72). Taking the average of
Egs. 8 and 9, and defining the interparticle position vector ri = 1 — r5, A may be
finally written in the following explicitly origin independent form

2

The origin independence of A may also be explicitly proven by writing any of its six
independent components, Ay, in a shifted frame, r; = r; + u. Using Eq. 8 one has

Ay = /d"“1/d7'2,0a:c (T1a + Ua) [T1p — T2 (11)

= /dm/drg Pze T1a [T16 — Top) +ua/dr1/drz Pze [T — 2],  (12)

where we have denoted with a prime (') the position spread tensor in the displaced
reference system and obviated the dependence of p,. on r; and 7. If the double integrals
are written as [ [... =Y ,> 5[, [5..., the AA term of the second contribution of

Eq. 12 becomes

/ / Puc [T1p — Tp) = / dryxyp / drapye — / drazop / drypze (13)
AJA A A

= / d’l”’l T1p GA(T'1> — / d’l"g Top GA(’I’Q) = 0, (14)
A A

1
A = = /drldr2 pxc(rl, ’1“2) ('I"12 X ’1“12) . (10)

where
GQ(”'l) = / dry ch("“1,7"2) (15)
Q

is the domain averaged Fermi Hole (DAFH) of the © domain [5]. On the other hand the
AB and BA terms of the second contribution of Eq. 12 become

//pxc (21 — 7] = /GBxb—/GAa:b,, (16)
AJB A B
//pxc (1 — 7oy = /GAa:b—/GBxb, (17)
BJA B A

i.e the AA contribution is zero, and the AB and BA contributions are equal and of
opposite sign. Consequently f f Pac [T15 — xop) = 0. This proves that Ay, = A/, i.e. that
Agp is invariant with respect of a translation of the reference system.
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Figure 1: Coordinate System



3 Partitioning the total position spread tensor into
local contributions

We partition each component A, into local contributions using

Ay = Y ALY (18)

A>B
AN = NP (19)
AAB _ \AB L \BA (20)
)\be = /dr1/dr2 Pzc(T1,72) T1a [T15 — T2 - (21)

To compute A it is convenient to transform the coordinates r; and ry, which are referred
to a common reference system, to their own local reference frames. Using r; = 7 + R4
and 7y = 7y + RP (See Fig. 1) or 71, = 71, + R2 and a9, = Top + RP, we have

AAB — / dry / Aropac(r1,72)(T1a + RN (Z1p + R) — (F1a + R (T + RP)

+ / dry / dropee(r1,79)(F1a + RE) (715 + RY) — (F14 + R2) (39 + R}))

= (T1aTup)aB + (F1a Ry an + (B2 F1) (

(T1adop) B — (T1a R ) an — (R2Ea) (R

+ (T1aTu)Ba + (T1aRE )Ba + (RDT1)pa + (RVR)
(2 ( (Ry Ta) (R; Ry

1aT2)BA — (T1aR5 )BA — (R

Tob)BA — BA» (22)

where the notation (0)oo = [, dry [ drs 0 pye(r1,72) has been used. Simplifying Eq. 22

AP = (3 aflb>AB — (T1aT2)AB + (T1aT10)BA — (T1aT2b)BA
+ [Ri* — RP] [(#1a)aB — (F1a)Ba] + R [(F1)an — (Z2b) 5]
— R [(Zn)pa — (F1)a] + [Rs — RY] [Ri' — R)] Nas, (23)

where Nag = (Jap = ()pa = Npa = [, dry [5dropae(ry,72) and Nag + Npa = 0ap is
the delocalization index. Taking into account that (Zop)a = (Z1p)aB, (T16)BA = (T2p)AB,
and (Z14)BA = (T24)aB Eq. 23 may also be written in the more symmetrical form *

AaAbB = (T1a%16)AB — (T1aT2)AB + (T1aT16)BA — (T1aT2b)BA
RyB [(21a)aB — (Taa)an] — BB [(z1p) aB — (v2p) aB]
+ RﬁB R?B Nap (24)

where we have defined RAE = R® — RA.
Performing the same steps with the diagonal element, AX*, we have

AR = / dry / dropae(r1,72) (w1 + R (w0 + BY) — (110 + R2) (2 + R
A A

In what follows the tildes (7) will be suppressed for simplicity with the coordinates being always
local, see Fig. 1



= (TraTu)as + (TR ) an + (R)zu)an + (RIR)) an
(T1aw)an — (T1a Ry yan — (Riwop)an — (ROR)) aa (25)
= (T1aT1)an — (TraZ2)an + Ro(T1p)an — RL (o) an (26)
The last two contributions are equal and of opposite sign, so that
ALY = (zamn)aa — (T1aTow)an (27)
4 Basic Integrals in terms of monadic functions. Im-
plementation in promolden

In this section we will evaluate the general integral

n n' _m_m o
(L1 0 TopThy ) AB —/

n n' m .m'
drlxlaxla,/ droxhy xhy, Pec(r1, T2), (28)
A B

with all possible combinations of the exponents n, n’, m, and m’. For this purpose, we
express pg.(r1,72) in terms of the monadic functions [3]

M

pre(P1,72) = D i fig (1) fig (12), (29)

i?j

where M is the number of partially of fully occupied MOs, 7;; = 7;; are known coefficients,
and f;; = fj; is a known linear combination of producs of MOs ¢;. For closed-shell 1-det
molecules, 7,; = —2, f;; = @ip;, and M = N/2, where N is the number of electrons.
Then

@m&%%m=:z%/wmwmwwfmmmwmz (30)
B

ij/drf” r)zhal :/drfij(r)xgnxg?/ (31)
B
an Dijalzy' ey )i e (32)

According to the expressions in Section 3 the following basic integrals over every domain

() are necessary:
Oun = [ ante) = [ rar [ 130,000 (33)

(T)ijo = /drfij(r)x = /r dr/x 2(r,0,¢)dr (34)
(Wijo = /d’rf” y—/ er/y r,0,0)d (35)
(ua = / dr f(r)z = / / (1.6, 6)d (36)
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(#%)ij0 = /ﬂdrfij(r)ﬁ:/
(Wiza = /Qd""fij(r)yz = /rzdr/fyz 2(r,0,0)dr (38)
/

(Do = /Q drfij(r)2® = [ rdr / 21 (r. 0, ¢)dr (39)

@i = [ drsymiay= [ vt [aufieo.0)d (40)
(x2)ijo = /d’rf” / er/:cz (r,0,¢)d (41)

Whon = [ drforpz= [ ar [ys3e0.0)dn (42)
(43)

where dr = sin 6dfd¢. In case of a 1-det wavefunction, the first integral ();; o is equal to
the atomic overlap matrix (AOM) element S} = (i]j)q.

We will see now how the above integrals can be obtained from the currently stored
integrals in the promolden code. There, the following angular averaged are stored:

B0 = (5 )é [ Simti) s a5 m

r2dr / 2?3} (r, 0, ¢)dr (37)

20+ 1 ;
where . 0
13(r) = { 2 e (45)

and Sy, are the real spherical harmonics, defined according to Ref. [4]. The explicit
R (r)s for | <2 and —1 < m < +1 are

R(r) — / I / AV oy, (46)

RAG) = [ L) (a7)
() = ﬂf"(’r)dﬁ (48)
() = | 0o, (49)
L = [YE e, (50
R, (r) = /ffzf%mﬁ (51)
Ry(r) = / % {37222 — 1} ()i = / % [W} fE(r)dr, (52)
R0 = [, (5)
R (r) = F?{ﬁ;yz} fo(r)dr. (54)



From Egs. 46-49 and 50, 53, 51 we have, respectively
r2dr x R9,(r) (55)
r2dr x TR (r) (56)

rdr x R | (r) (57)

<

D

I
—— — —

and

(62)
From the sum R{,(r) + 2RS,(r), we obtain
2
/ 2 [ (r)dP = % [Roo(r) + 2R3 (r)] - (63)

On the other hand, we have

2 2 2 2
R (r) + %R%(r) — [233 T‘;Z FUr)di = 2/%f9(r)df+[i—2f9(r)dﬁ (64)

From the above equation and Eq. 63 we have

2
[ 2210 = (B (r) + VERS ()~ Ry (65)
Finally, from Eq. 54
2 2
) . T~ 0 A 2 Lo
(Lo = [ 51w - =R ), (66)
and using Eq. 65 we obtain
2
" r
[ omai = [Biy(r) = VBRS () — R0 (67)

In terms of the above radial integrals the 7j contribution of all the ab components of
AAB and AAA are given by

Apr=(@*)a0p + (2% 504 — 2(@)al)s — 2R2" [(2)a() 5 — () a{2) 8]
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— R}PRIPNyag (68)
AB=) 405+ W) E0a — 2 a()s — 2R2P () a0 s — O aly)s]

_ RyAB RyAB Nag (69)
AP=(2%)a()p + (22)B()a — 2(2)a(2)s — 2R2" [(2) a0 5 — () a(2) 8]
— RABRAN,p (70)
A=) a0 s + (2y)p0a — (2)aly)s — (@) BY)a — Ry [(2)a()s — () a(z) 5]
—RP [()as — () aly) ] + REPR)P Nap = AP (71)
AP=(22)a() + (22)5()a — (2)a(2) B — (2)5(2)a — R2P [(2)a()p — () a(2) 5]
—R2P[(2)a0) — (al2)B] + REPRIPNag = ALD (72)
MP=w2)al)s + W2)p()a — Walz)s — W)B{2)a — REP (1) a()s — () aly)5)
—RyP [(2)a()s — ()alz)B] + RyPRIPNag = AL (73)
A = (@ ala— (@)% (74)
Apt = (Wala— )% (75)
A = (Pala— (204 (76)
ALY = (ay)aQa — (@)aly)a = A (77)
A = (22)a()a — (@) alz)a = AL} (78)
AR = (y2)al)a — (Y)alz)a = AL} (79)
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