Isotopic Studies of the Ammonia Decomposition Reaction Using Lithium Imide Catalyst: Supplementary Information

DATA FITTING PROCEDURES

Mass Spectrometry Data Analysis

Calibration runs of 100% pure Ar, N₂, NH₃ and H₂ were performed in order to ascertain the fragment peak ratios, Table S1. The ¹⁴N₂, ¹⁵N₂ and ¹⁴N¹⁵N species fragmentation patterns were assumed to follow the same probabilities as that of N₂ with natural isotopic abundance. The mass spectrometer collected histograms from m/z = 2 to m/z = 40 (integer steps), which were fitted to linear combinations of the fragmentation patterns in Table S1. A Levenberg-Marquardt least-squares algorithm was used to minimise the error for the fits.¹

Gas (pure)	m/z	Fraction	Associated Fragment
Ar	40	0.8627	⁴⁰ Ar ⁺
	36	0.0030	³⁶ Ar ⁺
	20	0.1343	⁴⁰ Ar ⁺⁺
N ₂	29	0.0069	¹⁴ N ¹⁵ N ⁺
	28	0.9401	$^{14}N_{2}^{+}$
	14	0.0530	¹⁴ N ⁺
NH ₃	28	0.0149	$^{14}N_{2}^{+}$
	18	0.0162	¹⁴ NH ₄ ⁺
	17	0.5209	¹⁴ NH ₃ ⁺
	16	0.4018	¹⁴ NH ₂ ⁺
	15	0.0218	¹⁴ NH ⁺
	14	0.0078	¹⁴ N ⁺
	2	0.0166	H_2^+
H ₂	3	0.0111	H_3^+
	2	0.9889	H_2^+

Table S1: Mass Spectrometry Fragmentation Patterns for Pure Gases

Scrambling of N₂ species

The difference between the measured ¹⁴N₂, ¹⁴N¹⁵N and ¹⁵N₂ species and their calculated scrambled counterparts are shown to be related as follows. Let the fraction of measured ¹⁴N₂ be *a*, the measured fraction of ¹⁴N¹⁵N be *b* and the total N₂ fraction be *s* (thus, measured ¹⁵N₂ is t - a - b). Then:

¹⁴N₂(measured) – ¹⁴N₂(calculated) =
$$a - \left(\frac{a + \frac{1}{2}b}{s}\right)^2 s$$

= $a - \frac{\left(a + \frac{1}{2}b\right)^2}{s}$

And:

¹⁵N₂(measured) - ¹⁵N₂(calculated) =
$$s - a - b - \left(1 - \frac{a + \frac{1}{2}b}{s}\right)^2 s$$

= $s - a - b - \left(s - 2\left(a + \frac{1}{2}b\right) + \frac{\left(a + \frac{1}{2}b\right)^2}{s}\right)$

$$=a-\frac{\left(a+\frac{1}{2}b\right)^2}{s}$$

Which is the same as the $\Delta^{14}N_2$ expression. Similarly for $^{14}N^{15}N$:

¹⁴N¹⁵N(measured) - ¹⁴N¹⁵N(calculated) =
$$b - 2\frac{a + \frac{1}{2}b}{s} \left(1 - \frac{a + \frac{1}{2}b}{s}\right)s$$

= $b - 2\left(a + \frac{1}{2}b - \frac{\left(a + \frac{1}{2}b\right)^2}{s}\right)$
= $-2\left(a - \frac{\left(a + \frac{1}{2}b\right)^2}{s}\right)$

Which is minus double the $\Delta^{14}N_2$ expression.

Sigmoid fitting

Sigmoid fitting used a Levenberg-Marquardt algorithm to fit to the following function:

$$1 - f_{\rm NH_3} = 1 - \exp\left(-\exp\left(\frac{A}{R} - \frac{E_A}{RT}\right)\right)$$

where A and E_A are fitted parameters, R is the gas constant and T is the temperature. For the lithium amide only and lithium amide plus iron cases, a more complex function was used, viz:

$$1 - f_{\rm NH_3} = xC_1 + (1 - x)C_2$$

where C_i denoted single Gompertz sigmoid functions (as above) and x was a value between 0 and 1.

References

(1) T. J. Wood, J. W. Makepeace, H. M. A. Hunter, M. O. Jones and W. I. F. David, *Phys. Chem. Chem. Phys.*, 2015, **17**, 22999–23006.