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Parameter setting for ordinary differential equations

In this work, we set the parameter values in the models based on the following:

1, We chose parameter values according to some previous works on gene regulatory networks [1-3]. For
example, the Hill coefficient reflects the degree of the nonlinearity. In this work we chose Hill coefficient
n = 4 to represent high nonlinearity of cell-cell interactions following some previous works [4].

2, To reduce the complexity of the model, we set most of the parameters uniformly, since so far for
cancer-immunity networks there is no such information about the regulatory strength among relevant cell
types. For example, we set the same degradation or apoptosis rate for different cell types [4], and we set
the same basal synthesis rate for different cell types.

3, We set parameter values that can satisfy certain biological constrains. For example, the apoptosis
rate for each cell type is usually a few days [5,6], and the cell density is typically at the order of thousands
cells per uL [7].

4, We performed the sensitivity analysis to the parameters, which supports the robustness of current
parameter regions for our model.

5, Most of the parameters in the current model have not been determined by experiments. In this
work we focus on the dynamics implications of the regulatory structure of the cancer-immune networks,
i.e. the topology of the networks. We believe that the topology of the network governs the operating
principles of the networks, as suggested by previous work [8,9]. It is also possible to interrogate the
robustness of the topology by random perturbations to the parameters, as suggested by some recent

work [8].
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Figure S1. Predictions for anticancer targets based on the methods of optimizing transition actions. X
axis shows 28 parameters (regulatory strength among different cell types, 17 activation parameters and
11 inhibition parameters, see Table S3 for the meaning of each parameter), and y axis shows the 6
different parameter sets, reflecting heterogeneity of tumor populations. The color indicates the influence
of interventions on each target (links), with purple representing the increase of targets, and cyan
representing the decrease of targets.
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Figure S2. The landscape comparisons of different Hill coefficient n for cancer-immunity network.
When Hill coefficient n >= 3, the landscape all show tristable states (cancer state, immune state and
Hybrid state). Here, for n = 5,6, 7, all other parameters are set as the default values (same as n=4).
For n = 3, the activation constant a is set to 0.4 while keeping other parameters as default, and for
n = 2, the activation constant a is set to 0.6 while keeping other parameters as default.
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Figure S3. Sensitivity analysis for the 28 key parameters (regulatory strengths among different cell
types, including 17 activation constant and 11 inhibition constant) on the transition action (S¢_s; and
Sr—s¢) at Hill coefficient n=5. Y-axis represents the 28 parameters. X-axis represents the percentage
of transition action (S) changed relative to S without parameter changes. Here, Sc_~ represents the
transition action from attractor C to attractor I (cyan bars), and S;_~ ¢ represents the transition action
from attractor I to attractor C (magenta bars). M1 represents MITAM and M2 represents M2TAM.
(A) Each parameter is increased by 15%, individually. (B) Each parameter is decreased by 15%,
individually.



Table S1. Interaction matrix M. The element M(j,4) (the jth row and the ith column of the
matrix M) represents the interaction type from node j to node 4. 1 represents activation, —1 represents
inhibition, and 0 represents no interaction. Can: Cancer cells; Treg: regulatory T cells; M1: M1TAM;
M2: M2TAM; MDSC: Myeloid Derived Suppressor Cells; DC: dendritic cells; CD4: CD4+ Tcells; CD8:
CD8+ Tecells; NK: natural killer cells.

Cell types | Can Treg M2 MDSC TGFg DC CD4 CD8 NK M1
1 2 3 4 5 6 7 8 9 10
1 1 0 1 1 1 1 0 0 0 0
2 0 0 0 0 1 -1 -1 -1 -1 0
3 0 1 0 0 1 0 0 0 0 0
4 0 1 0 0 0 0 -1 -1 0 0
5 0 0 0 0 0 0 -1 -1 0 0
6 0 1 0 0 0 0 1 1 0 0
7 -1 1 0 0 0 0 0 1 0 1
8 -1 0 0 0 0 0 0 0 0 0
9 -1 0 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 1 0 0

Table S2. Parameter values for Cancer-Immunity model with tristability

Symbol Value Unit Description

k 0.2 Day™! apoptosis rate of cells

a 0.36 103 cells/(uL- Day) activation rate

b 0.8 103 cells/(pL- Day) inhibition rate

pc,pn  0.85 102 cells/(uL- Day) proliferation rate of cancer and NK cells
n 4 Hill coefficient

S 2.5 Threshold for Hill function




Table S3. Target ID (link ID) and corresponding interaction links (17 activation regulations and 11
inhibition regulations), as well as related references. Here, — > represent activation, and —| represent
inhibition.

Target ID  Interaction References
1 Can — > Can [10]

2 CD4 —| Can [11]

3 CD8 —| Can [12]

4 NK —| Can [12,13]
5 M2TAM — > Treg [14]

6 MDSC — > Treg [14]

7 DC — > Treg [15]

8 CD4— >Treg [16]

9 Can— >M2TAM [14]

10 Can— >MDSC [14]

11 Can— >TGFb (17]

12 Treg— >TGFb [18,19]
13 M2TAM— >TGFb  [14,20]
14 Can— >DC [21]

15 Treg—|DC [19]

16 Treg—|CD4 [19]

17 MDSC —|CD4 [14]

18 TGFb —|CD4 [19]

19 DC- >CD4 [15]

20 Treg —|CD8 [19]

21 MDSC —|CD8 [14]

22 TGFb —|CDS8 [19]

23 DC — >CD8 [15]
24 CD4 — >CD8 [19]

25 MITAM — >CD8  [14,20]
26 Treg —|NK [19]

27 NK — > NK [22]

28 CD4 — > MITAM  [23]
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