Supporting Information

Free-standing Reduced Graphene Oxide/ MnO2-Reduced Graphene Oxide-

Carbon nanotube nanocomposite flexible membrane as Anode for High Capacity

Lithium Ion Batteries

Yong Li^{†‡}, Dai Xin Ye^{†§}*, Bin Shi[‡], Wen Liu[‡], Rui Guo[‡], Hai Juan Pei[‡], Jing Ying Xie[‡]*

*State Key Laborary of Space Power Technology, Shanghai Institute of Space Power

Sources, shanghai, 200245, China

[§] Department of Chemistry and Molecular Biology, University of Gothenburg, S-41296, Gothenburg, Sweden

* Address correspondence to <u>daixin@chalmers.se</u> or jyxie@mail.sim.ac.cn

Figure S1 top-view SEM images of G-MGC composite membrane.

Figure S2 TG curves for MGC and G-MGC from room to 800 $^{\circ}$ C at a heating rate of 10 $^{\circ}$ C min-1 under air.

		MnO ₂ content in	MnO ₂ content in
Types	MnO ₂ content	electrode (not	electrode
	in composite	including current	(including current
		collector)	collector)
PPy/MWNTs/MnO ₂	48 wt%	38.4 wt%	7.68 wt%
composite ^[1]			
Pure MnO ₂ nanorods ^[2]	100 wt%	40 wt%	20 wt%
MnO ₂ /carbon composite ^[3]	42 wt%	33.6 wt%	16.8 wt%
MnO ₂ /N-doped carbon	81.4 wt%	61.05 wt%	30.5 wt%
composite ^[4]			
Polythiophene/ MnO ₂	86 wt%	68.8 wt%	34.4 wt%
composite ^[5]			
manganese oxide/			
carbon yolk-shell nanorods	70.07 wt%	49.63 wt%	24.8 wt%
composite ^[6]			
MnO/graphene composite ^[7]	82.6 wt%	66.08 wt%	33.0 wt%
G-MGC freestanding		56 mt0/	56 mt0/
membrane		30 W1%	30 W1%

Table S1 Comparison of MnO₂ contents of G-MGC freestanding flexible membraneelectrode with previous works.

Note: MnO_2 contents in electrode (including current collector) were calculated based on the areal density of copper foil (7.5 mg cm⁻², almost the least value in the Li-ion battery market) and electrode of the reported paper (if not mentioned, supposed the value is 7.5 mg cm⁻²).

References

[1] J. X. Li, M. Z. Zou, Y. Zhao, Y. B. Lin, H. Lai, L. H. Guan, Z. G. Huang, *Electrochim. Acta.* **2013**, *111*, 165.

[2] J. B. Chen, Y. W. Wang, X. M. He, S. M. Xu, M. Fang, X. Zhao, Y. M. Shang, *Electrochim. Acta.* **2014**, *142*, 152.

[3] H. Lai, J. X. Li, Z. G. Chen, Z. G. Huang, *ACS Appl. Mater. Interfaces*, **2012**, *4*, 2325.

 [4] J. G. Wang, C. B. Zhang, F. Y. Kang, ACS Appl. Mater. Interfaces. 2015, 7, 9185.

[5] W. Xiao, J. S. Chen, Q. Lu, X. W. Lou, J. Phys. Chem. C. 2010, 114, 12048.

[6] Z. Y. Cai, L. Xu, M. Y. Yan, C. H. Han, L. He, K. M. Hercule, C. J. Niu, Z. F.Yuan, W. W. Xu, L. B. Qu, K. N. Zhao, L. Q. Mai, Nano Lett. 2015, 15, 738.

[7] Y. M. Sun, X. L. Hu, W. Luo, F. F. Xia, Y. H. Huang, *Adv. Funct. Mater.* 2013, 23, 2436.