Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Electronic Supplementary Information for

Straintronics in Two-Dimensional in-Plane Heterostructures of Transition-Metal

Dichalcogenides

Wei Wei, Ying Dai,* and Baibiao Huang

School of Physics, State Key Laboratory of Crystal Materials, Shandong University,

Jinan 250100, China

*Corresponding Author: <u>daiy60@sdu.edu.cn</u> (Y. Dai)

Figure S1: Band structures for MoS₂, MoSe₂ and WSe₂ with SOC effects taken into account, the Fermi level is set to zero.

Figure S2 Band structures for $MoSe_2/MoS_2$, $MoS_2/MoSe_2$, WSe_2/MoS_2 and MoS_2/WSe_2 with superlattice models and without local structure relaxation, the Fermi level is set to zero.

Figure S3 Projected band structure for MoS₂/MoSe₂, the Fermi level is set to zero.

Figure S4 Projected band structure for MoS₂/WSe₂, the Fermi level is set to zero.

Figure S5 Band structures with the SOC effects taken into account for MoS_2/MoS_2 , MoS_2/MoS_2 , WSe_2/MoS_2 and MoS_2/WSe_2 , the Fermi level is set to zero.

Figure S6 Band structures for MoSe₂/MoS₂-a and WSe₂/MoS₂-a with the SOC effects taken into account, the Fermi level is set to zero.