Transition metal (Co, Ni) nanoparticles clad with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride

Xu Huang, Xuezhang Xiao*, Wei Zhang, Xiulin Fan, Liuting Zhang, Shouquan Li, Hongwei

Ge, Qidong Wang, Lixin Chen*

State Key Laboratory of Silicon Materials,

Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China

Symbol	Model	g(a)
D1	one-dimensional diffusion	α ²
D2	two-dimensional diffusion	$\alpha + (1-\alpha)\ln(1-\alpha)$
D3	three-dimensional diffusion (Jander equation)	$[1-(1-\alpha)^{1/3}]^2$
D4	three-dimensional diffusion (Ginstling-Braunshtein equation)	$(1-2\alpha/3)-(1-\alpha)^{2/3}$
F1	First-order reaction	$-\ln(1-\alpha)$
R2	two-dimensional phase boundary	$1 - (1 - \alpha)^{1/2}$
R3	three-dimensional phase boundary	$1 - (1 - \alpha)^{1/3}$
A2	Avarami-Erofe'ev	$[-\ln(1-\alpha)]^{1/2}$
A3	Avarami-Erofe'ev	$[-\ln(1-\alpha)]^{1/3}$

Table S1. Common solid-state rate expressions for different reaction models[1,2]

^{*}Corresponding author. Tel./fax: +86 571 87951152.

E-mail address: xzxiao@zju.edu.cn (X.Z. Xiao); lxchen@zju.edu.cn (L.X. Chen).

Fig. S1 - STEM photograph of as-prepared Ni/C and EDX of mapping data.

Fig. S2 - STEM photograph of MgH₂-6% Ni/C and EDX mapping data.

Fig. S3 - DSC profiles of MgH₂ doped with 2, 4, 6, 8%Ni/C.

Fig. S4 - XRD patterns of (a) dehydrogenated MgH₂, (b) MgH₂-6%Co/C and (c) MgH₂-6%Ni/C.

Fig. S5 - XRD patterns of rehydrogenated MgH₂-6%Co/C (a) and MgH₂-6%Ni/C (b).

References

- Zhang Y, Tian QF, Zhang J, Liu SS, Sun LX. The Dehydrogenation Reactions and Kinetics of 2LiBH₄-Al Composite. J Phys Chem C 2009;113:18424-18430.
- [2] Liu YF, Zhong K, Luo K, Gao MX, Pan HG, Wang QD. Size-Dependent Kinetic Enhancement in Hydrogen Absorption and Desorption of the Li-Mg-N-H System. J Am Chem Soc 2009;131:1862-1870.