Supplementary Information

Electric Field Tunable Half-Metallic Characteristic at Fe₃O₄/BaTiO₃ Interfaces

Xueyao Hou¹, Xiaocha Wang², Guifeng Chen³, Wenbo Mi^{1,1}

¹Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology & Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Faculty of Science, Tianjin University, 300354, Tianjin, China

²School of Electronics Information Engineering, Tianjin University of Technology,

300384, Tianjin, China

³School of Material Science and Engineering, Hebei University of Technology,

300130, Tianjin, China

^{*}Author to whom all correspondence should be addressed.

E-mail: miwenbo@tju.edu.cn

Table. S1. Bader charges of bulk Fe_3O_4 , TiO-Fe_BO (solid lines) and OTi-Fe_BO (dash lines).

Bader charge (e)	unstrained FO	5% FO	TiO-Fe _B O	OTi-Fe _B O
0	-0.81	-0.80	-1.09	-1.11
Fe _A	+1.49	+1.62	1.65	1.61
Fe _B	+1.65	+1.59	1.62	1.50

Position in z direction

Fig. S1. The potentials of TiO-Fe_BO and OTi-Fe_BO along z direction.

Fig. S2. The spin-resolved band structure of bulk BaTiO₃, the high-symmetry points are Γ (0, 0, 0), X (0, 0.5, 0), M (0.5, 0.5, 0), A (0.5, 0.5, 0.5).

Fig. S3. DOS of the III-O and III-Ti of the two models with different electric fields, the color of line were plot on the right.

Fig. S4. The spin-up band structures of $TiO-Fe_BO$ (top panel) and $OTi-Fe_BO$ (bottom panel) with different electric fields.

Fig. S5. (a), (d) The displacements of TiO and Fe_BO of TiO-Fe_BO and TiO-Fe_BO with different electric fields; (b) or (c) is M_{FeA} (M_{FeB}) as functional of layers in TiO-Fe_BO with different electric fields; (e), (f) are responding M_{FeA} (M_{FeB}) in OTi-Fe_BO.