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I. THE ROTOR-EVENT ANALYSIS

For the purpose of clarity, part of the main manuscript is repeated here in order to help the reader. As explained
previously, high magnetic field MAS-DNP simulations can be efficiently computed in the pw rotating frame as
described in [1-3]. The corresponding Hamiltonian for two electrons (with indices 4,4’ = a,b) and one nucleus (with
indices j = 1) can be written:

H(t) = Ho(t) + Hpw

~ ~

Ho(t) = Hz(t) + Hup(t) + Hy + Hpip(t) + Ha(t), (1)
and the terms are:
Hy(t) = (wa(t) = wyw)Sa,z + (@b(t) = W) Sp.z — wnln 2
Fup(t) = A (080 Toe + 5 (AT (080T + A~ (080T,
ﬁ,uw = wl(‘/g\a,x + §b,ac)
Hy = ~2J0(80:50- + 5855, + 8,5)
Aip(t) = Dap()(280-55- — 3 (545, +8:80)) )

The time propagation of this three-spin system with two electrons with S = 1/2 and a nucleus with I = 1/2 can
be evaluated by solving the Master equation (Liouville-von Neumann (L-vN) equation including relaxation) for its
spin density operator. In operator space this equation determines the time evolution of the expectation values of a
full set of independent operators S(m) that are required to decompose the spin density matrix p(t). For the three
spin 1/2 problem, the dimension of p(t) is 2% x 23 = 64, and requires 64 independent operators (m € [1,64]) to
decompose this matrix in operator form on the basis of S(m) spin operators

64

plt) =Y 25t ()t (3)

m=1

We define here the vector o(t) composed of all coefficients o,,(t) = s™)(¢) that are equal to the expectation values

(S (t) = s(m)(t), with m € [1,64], when assuming that Tr(5(™2) = 1/2. The components of the Liouvillian L
operating on the 64 expectation values are thus 64 x 64 matrix

9 o(t) = Lu(t)o(t) + Bao (1) + Ba(o(t) — o) (4)

The 0°? vector is composed of all sgzn)’s of the thermal equilibrium pe, in the laboratory frame. The elements of

L g are determined by the matrix elements of the Hamiltonian and 1%2 and ﬁl by the relaxation rates responsible
for the decay of coefficients of the off-diagonal operators and the return of the coefficients of the diagonal operators

the to the thermal equilibrium values sé’;”, respectively. The large dimension, and the time dependence of L are

the main cause of the long time span necessary to solve the master equation. The present work aims at reducing
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the size of the o(t) vector and thereby the dimension of L in an effort to shorten significantly the computational
time.

In earlier studies we accomplished the evaluation of the time dependence of p by evaluating the evolution operators
of a single rotor period by subdividing this time period in a large number of small time intervals (k — 1)dt to kot
with x = [1, K] and ¢, = Kdt the length of the rotor period. During these calculations we represented the density
operator by a state vector composed of its elements and Z(t) in the master equation was defined accordingly. To
determine the spin evolution, during each time interval we constructed the constant operator E,.i = E(m?t) derived

from H(k6t) and calculated the evolution operator U, = exp(L.dt). U, is determining the propagation of p via

p(kdt) = U,.p((k — 1)6t). During sample rotation the evolution during each interval can be characterized by the
action of the four possible rotor events happening during the interval and the relaxation mechanisms.

In the following sections we derive expressions for the EK and ﬁ,@ operators corresponding to the rotor events after
possible reduction of the dimensionality of o(¢). In the next discussion we assume that two or more rotor-events
do not occur at the same time. During the derivations we will use the fact that each event involves a crossing

of only two energy levels and that therefore a reduction of the dimensions of the the L, and U, matrices can be
accomplished.

A. The Bloch equation for two anti-crossing energy levels.

At first we describe the evolution of a system with two spin states |1) and |2) that cross at a time tx. When
we define the energy difference between the states crossing two states by Awio(t) then at time ¢, Awia(tx) = 0.
When in addition the two levels are coupled via an interaction of strength &;2(¢) then the effective Hamiltonian
determining the spin evolution of the two-level system has the form

= 1 [ Awia(t &ia(t
Hys(t) = 5 < fo(t()) —Awg;(t) ) (5)

where in general £15(t) = 1/2(€,? — i€)?). Then this Hamiltonian can expressed in operator form as
Hia(t) = Awin(t)8 + 62055 + 671057, (6)

where §;2,§;2,§§2 are the fictitious spin-1/2 operators corresponding to the transition |1) — |2). In Liouville

space EH(t), El and Eg matrices can be derived that operate on the state vector defined by the coefficients

{s12(t),5,(t), si?(t)} of the spin density operator p(t) = Yz 511,2(1&)@1)2 + 3(1)2§32. The form of these operators
are
~1.2 0 =&2(t) &2 ~ 0 0 0 . ~1/Ty 0 0
Ly =] €2t) 0 —Aw?@®)|; Ro=]0-1/» 0 |; Ri=| 0 00 (7)
—§,°(t) Aw®(t) 0 0 0 —Un 0 00

Insertion of these operators in the master equation in Eq. 2 results in the well-known Bloch equations. Levit
and Di Bari as well as Levante and Ernst [4, 5] have suggested to extend the o(t) vector by choosing a constant

coefficient sy = 1 of the unit operator §32 in order to transform the master rate equation from a in-homogeneous
= 21,2 x =z

to a homogeneous form. In that case the Bloch operator Lp(t) = Ly (t) + R1 + R becomes a 4x4 matrix and the

master equation gets the form

| 0 0 0 0 |

d 12 12,eq _ 12 12 12

Shmlo= 0" e Sn | 5| ®)
e 0 —£21) Aw'(t) —1/T; sb2

where we assumed that pf? = 25}5276‘%@2. The solution of this equation provides the spin evolution of a two-level
system in the form of the time dependence of the s,(t) , p = z,y, 2z, vector elements. This solution depends on
all Hamiltonian parameters, and in particular on the value £'?(ty) around ty for which Aw!'?(¢y) = 0. The time
dependence of the o(t) vector can be obtained by step integration of the master equation. Defining the boundaries
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of the time intervals of the integration by t, = kdt with x € [1, K] and §t = t,./K, the propagator [7(0 s t)
responsible for the spin evolution from ¢ = 0 to ¢ can be calculated as:

~

ko N .
0 ty) = H Ug, U, = exp(Lp(ts)dot) (9)

The Ry causes a decay of the coherences s!2(t) and 5,7(t) and indirectly influences the time evolution of s!*(t)
towards its equilibrium value.

B. The Landau - Zener solution of the two level anti-crossing event.

Following notations introduced in section 2 B, we are now addressing the case of rotor events for which wig < L
In such cases, the jump time associated with the transition is typically smaller than 1 us. As a consequence, the
electronic T3 relaxation time can easily be longer than the duration of the crossing, and thus its influence on the
spin evolution conveniently ignored. In that case we can rely on the Landau-Zener formula for the change of the
difference between the populations of |1) and |2), expressed by the value of s1?(¢), before and after the crossing ty.

When ¢ty is included in the time step interval [t._1,tx], we can define a U Lz Propagator based on this formalism
that act on the elements of the state vector, assuming that sl2(t,_1) = S;Q(t —1) =0, as

s32(t_1) = Upg sy’ (te-1) = 0 et
77 i 12 _ 1 _ =l (te—1)[®
SP(0) = Tugstam) = 0 with 2 =1 - o | gt
s (1) = Upg st (te-1) = [1 = 267512 (te-1)
where we rely on the fact that ti—1 =ty and t is the time just after the event. In the case we can rely on the

Landau-Zener formalism, U B, Can be appr0x1mated by the single element operator U Lz, Operating on s12(te—1)
times the longitudinal relaxation propagator during the time interval [t,_1,t.]. With this approach it is possible
to account for the longitudinal relaxation by working with the {1, s!?} coefficients. The propagator for this time
interval containing a level crossing event equals then

A = A 0 0
Up = exp(R16t) x Upy , = { [s12:00(1 — ¢=0t/T1)] [e=0t/Th (1 — 212)] }

where
= 0 0 O mst 0 0 = 1 0
Rl (t) - SiQ’eq(t)/Tl —1/T1 :| ) € - |:Si2,eq(1 _ efét/Tl) 675t/T1 and ULZ,K — 10 1- 2€i2 .

In the following sections we will determine the necessary Sm) operators (or s(m) coefficients) and which of the two
approaches, the Bloch type or the Landau-Zener propagation, are required to present the four rotor-events in our
thee-spin system and shorten the simulation’s duration.

1. The uw rotor events

Let us assume that the electron a in the {e, — e, — n} spin system undergoes a puw rotor-event at time ¢,. For
simplicity we further assume that the four events, where the levels |8, xoxn) and |a,XpXn) cross with x = «, S,
occur at the same moment ¢,. This is indeed the case if we ignore all anisotropic time dependent hyperfine and
dipolar and J interactions in the spin Hamiltonian. Such assumption appears reasonable since these interactions
are usually smaller than the g-tensor anisotropies. In the pyw rotating frame the Hamiltonian can then be written:

ﬁuW(t) = (wa(t) — qu)ga,z + (wp(t) — Wuw)gb,z - wnfn,z + oJl(ga,ac + §b,x)
With this assumption the four simultaneous puw rotor events happen when Aw,(tx) = (we(tx) — wuw) = 0.
These four crossings can be described by a Liouville space vector o(t) composed of the following elements
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{8a,2(t), Sa,y(t), Sa,2(t)}. In the matrix representation of ffﬂw(t), the Liouvillian can be written:

N UW 0 —Ww1 O Sa,z
Ly (#)=]|w 0 —Auwy(t) with oq w(t) = | Say | (£) (10)
0 Auw,(t) 0 Sax

To obtain an homogeneous master equation, sy = 1 can be added (see section A for details) in order to introduce
both transverse and longitudinal relaxation. This Bloch-type Liouvillian has thus the following form in the basis
set {E, Sa,za Sa,yv Sa,m}:

0 0 0 0 1
2o se()/The —1/Te  —wi 0 i = | S0z
Lg ()= 0 Wi —1/Toa —Awy(t) with gam(® = | o0 O (1)
0 0 Awa(t) _]./TQ,G Sa,x
and with
d NI
aaa,uw(t) =Lg ()0a,uw(t)

2HHW RaA,HW
The propagator of the ' time interval, U Bax = XP(Lp (tx)dt), can be straightforwardly calculated and applied
on the four elements of 0, ,w(t). In cases where the electron Ty , is long enough, e.g. at low temperatures, or w; is
weak enough and the pw event happens during an interval x we can apply the Landau-Zener (LZ) formalism and

XHW

use the 2 x 2, for both electron a and b, Uy ,, evolution operator
Sa,z I | 1= 2emrV 0 Sa,z
|: Sb.2 :| (t,$> - ULZ,n |: Sb. :| (tnfl) - I: 0 1— QGZ,NW] Sz (tn)
with
EZ’“W -1— e*ﬂ\w1\2/[2(d/dt)Awa]t

EZ’#W -1— e—ﬂ\wl\Q/[Q(d/dt)Awb]t

~=1 if pw crossing, or = 0 if no crossing

=1 if yw crossing, or = 0 if no crossing

The relaxation can be included here as well by introducing the unity operator and in that case

1 o apw 1
Saz | (L) = exp(Rlét)ULZ,,,i Saz | (th—1)
Sb,z Sb,z
0 0 0 1 0 0 1
= | se1(1 — e 9/ Tra) e=0/Ta 11— 2emmv 0 Saz | (te—1)
sp7(1 — e=%/Tue) 0 e/ Tio 0 0 1 — 2ebHnv] Sb.2

Consequently, combining both types of yw rotor events in our Bloch type of calculations requires an extension of the
necessary coefficient of 0w (t) t0 {S4,2(), Sa,y(t); Sa.x(t), $b,2(t), Sty (t), Sp,2(t)}. With this manifold of coefficients
the Liouville matrix gets a dimension 6 x 6 (or 7 x 7 with relaxation). When the LZ approach is sufficient to describe
the pw rotor-events, the dimension of the propagators should be extended to 2 x 2 (or 3 x 3 with relaxation).

2. The dipolar-J rotor-events

The D-J rotor-events occur when two resonant frequencies of electrons a and b become equal wq(tr) = wp(tx).
Then the levels |a,f0p, xn) and |B,apXn) anti-cross when experiencing a dipolar and/or spin exchange coupling
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(D-J), due to the off-diagonal element. For an isolated D/J event the Hamiltonian can be written as

Hp (1) = (wa(t) = wyw) Saz + (@b(t) = ) Sb,z = wnln -
+(Dap(t) = Jup) (28429 - — 1) + 1/2(2Jap + Dap(£))(SF S, + 57 5;)
= 1/2(wa(t) + wp(t) = 2w0p0) (820 + S2p) + (Dap(t) — Jap) (284,255, — 1)
+Awab§ZQ,z + (2Jap + Dab(t))§ZQ,w - wnfn,z
where Awgp = 1/2(we(t) — wp(t)) and §ZQ7Z = 1/2(§a,z - §b7z) and §ZQ,$ = 1/2(§j§b_ + §a_§;') Ignoring
the hyperfine coupling, at the time of a D-J rotor-event two two-levels anti-crossings happen simultaneously for

Xn = Qn,Bn. These events can be described using the three fictitious spin-half operators, known as the electron
zero-quantum operators describing the | Bp, Xn) - |BabXn) transitions:

Sza.e = 1/2(8F 8, + 8, 55)
Snqy = —i/2(85 8, - 8, 5)
SZQ,Z - 1/2(Sa,z - Sb,z)

The evolution of the op_j(t) vector during these events can be fully described by following the time dependence of

the coefficients {szq, .57qQ.y, 5zq,z} of these operators only. We also define the double quantum operator Spq . =
~ ~ ~D-J
L(S, .+ Sy.), and during the D-J event the szq . gets modified while the coefficient spq . is invariant. Thus Ly
2 ) ) Q, Q, H
without relaxation, in the master equation considering only the elements of the Hamiltonian gets the form in the

manifold of {spq,», $2q,2, SZDQ{y’ 57Q, Dot

SDQ,z by SDQ,z 0 0 0 0 SDQ,z
d | szq,- 270 870,z 0 0 —DJu(t) 0 57Q,2
— -y t)=1L -5 t) = . -y t
a | 553, (t) =Ly iy O=10 DIty 0  —Awaw® || D5, | P
sZDQI sZDQf 0 0 Awep(t) 0 s]ZDQ‘TT

where DJyp, = (Dap + 2Jab) is assumed to be real. To combine with the puw rotor-event, p must be re-expressed in
the basis that includes Sa » and Sb =z, and here we use the double quantum z operator to perform a basis change
from {SDQ ZSZQ ZSZQ i SZQ .} to the basis {S,LZ, Sb,z, SZQ,J: ZQ’y} via

Sa,z 1/2 1/2 00 SDQ,z
Sb,z _ 1/2 —]./2 00 S7Q,z
P, =10 0 1ok, | (12)
SZDQI 0 0 01 sZDQw

Using this transformation the L-vN equation can be re-written in with the coefficients {sq . s -, SZQ i SZQ w}

Sa,z b3 Sa,z 0 0 —DJab( )/2 0 Sa,z
d Sb,z =r Sb,z 0 0 DJab( )/2 0 Sb,z
— N ty=1L t) = N t 13
dt sIZDij (t) H %Q;y (t) DJap(t) —DJuy(t) —Awgy(t) sZDQ;y (t) (13)
sZDQt sZQ - 0 0 Awab( ) 0 SZDQ,x

In many circumstances the dipolar interaction is relatively large and therefore it will be necessary to use this
Bloch type of Liouvillian. Of course, in the case of large coupling we have to realize that the “single event at the

time” assumption could be violated, i.e there may be an overlap between a pyw and a D-J rotor-event. Assuming
SpUW ~D-J

independent rotor-event, the three spin system evolution can be obtained by combining operators Ly and Ly in

equations 11 and 13. ThlS results in a 8 x 8 Liouville operator, after the addition of {SZQ o SZQ y} to the six terms
~puwdD-J

of ouw. Once relaxation is added, that leads to a 9 x 9, Lg matrix that is much smaller than the 16 x 16

problem size required in the full Liouville space calculations.

When the dipolar interaction is weak and the duration of the D-J rotor-event is short enough such that the
transverse relaxation can be ignored, we can use the L-Z formula for the change of the single szq . (¢) element only.
However the fact that our presentation for describing the pw events involves already s, .(t) and sp . (t), we first



write the L-Z propagator U Lz, Of the k' time interval as :

S5DQ,z | 4+ 5 5DQ, 2 |1 0 5DQ, >
{ 5205 ] (te1) = Uz, { 5200 ] (th—1) = [0 1_ 261)/(1} { 200 } (tr—1)

with

—7T|Dab + 2Jab|?,{71

€pyy =1 —exp l 5 (dAwab) if D — J crossing, or = 0 if no crossing
dt

and then use the transformation of Eq. 12 to combine the LZ approach of the uw and the D-J events. The obtained
dimension of the Liouville space stays 3 x 3 and the D-J event taking single quantum 7} relaxation into account

1 = ~D/J 1
Saz | (ts) = exp(R10t)Ury . | Saz | (ts—1)
Sb,z Sb,z
0 0 0 1
= | [s¢7,(1— e T)] [L—epyy+ e 0/T] €D/J Saz | (tr—1)
sy (1 — e ot/ €D/J [1—epyy +e /M) Sb,z

The above calculations account for the presence of an electron exchange interaction J, 5 (see equation 2) that are
smaller than the EPR linewidth otherwise, the basis isn’t appropriate to describe the events. The product state
representation of the spin states during crossing and in between must be modified, which complicates our discussion.

3. The CE rotor-events

In a similar fashion as the first two rotor-events, the cross-effect rotor-events have their own frequency matching
conditions. When the nuclear Larmor frequency w,, is much larger than the value of D — J,3, two conditions are met
when |wq (tr) — wp(tx)| >~ £w, (more rigorous expressions can be found in [1, 6-9]). These two types of CE events
occur when the energies of |a,Bpcv,) and |BoanfBn) (CE™: wq(t) — wp(t) ~ —wy,) or when |Byapay,) and |aqBp6n)
(CE™ :wq(t) — wp(t) ~ +wy,) match. To simplify the forthcoming discussion we define the eight spin states of the
three-spin system as follows:

|1> = ‘aaab/Bn> ; |2> = ‘aaaban> ; ‘3> = |aaﬁb5n> ; |4> = |aa6ban>
5) = [BacwBn) 5 [6) = |Bacwan) 5 |T)=1BaBoBn) 5 [8) = |Baboin)

In this notation the |1) — |7) and |2) — |8) transitions are electron DQ transitions and the |3) — |5) and |4) — |6) are
the electron ZQ transitions. The even states are nuclear |y,¢pa,) states and the odd ones |xo¢u5,) states. The
CE events happen when the four states |3) to |6) meet each other. Thus the CE~and CETevents involve

CE™ : [4) < |5) ; CET: [3) «6).

The computational approach for finding the necessary s™) (t) elements that compose the o(t) vector describing
the CE events is more complex than in the case of the events discussed earlier. The Hamiltonian defining the
spin system does not contain matrix elements between the crossing states and therefore it is not straightforward
to determine directly the coefficients of the fictitious spin-half operators §§E, §yCE, §ZCE of the transition |4) — |5)

and SCB+, §5E+, SCE+ of |3) — |6). As previously shown by Hu and others [6-8], effective matrix elements between
two CE crossing states can be derived using degenerate perturbation theory when the spin-spin interactions are
smaller than the nuclear Zeeman interaction (high field approximation). The presence of the flip-flop dipolar

coupling matrix elements connecting the ZQ states (4/Hp_y|6) (and (3|Hp_;|5)), and the existence of pseudo-

~

secular hyperfine coupling matrix element of the nuclear transitions (6| Hyp|5) (and (3|Hurp|4)), combined with the
wy, energy difference connects the levels |4) — |5) and [6) (and |3) — |6) and |5)) via an effective matrix element

(4|Hcg—|5) (and (3|Heps|6)). These effective elements can then be used to introduce the fictitious spin-half
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operator, assuming it is real, into the Hamiltonian operator expansion with the coefficient [7]

hCESCEi \/AJr—Da b/wnSCEi
with
(41557 715) = 1/2 5 (3[55FF]6) = 1/2
GCE+

At this point we should try to express the Hamiltonian using the operators. Since these operators only have
matrix elements in the electron ZQ subspace defined by the states {|3),]4),[5),|6)} we split the Hamiltonian in

two terms, HCE( ) that contains operators in the ZQ subspace and Hnon ce(t) which does not influence the CE
rotor-events

H(t) = Her(t) + Huon—cr(t).

This is made possible by projecting the fnyz operator in two parts fn,z = fgg + f;?f;? as well. The first f,%% has
four matrix elements in the ZQ subspace {|3),]4),]5),|6)} and I AD Q has four elements in the electron DQ subspace
{11),12),17),(8)}. After replacmg the dipolar flip-flop operator term (S*S + S S+), and the pseudo-secular
hyperfine operator terms (S, .1, ,) with p = z,y, by the hSESCE+ terms we get that

~

Hop(t) = 1/2(wa(t) — wp(t))(Sa 2 — Sp2) +wa IZ2 + hPS, P 4 hIP G, OF
Hnon—CE(t) = I/Q(Wa(t) + Wb(t))(ga,z + §b,z) + wnfﬁg + Aga,zfn,z + D§a,z§b,z

The last two terms in lLAInOH_CE(t)7 although with matrix elements in the ZQ subspace, do not influence the CE
event spin dynamics. The Hcg part of the Hamiltonian can be rewritten:

ﬁCE(t) _ AWCE—S‘zCE- + AWCE+§zCE+ + hSE§w0E+ + thngE-
using the following notations

AwCE = (wa(t) — wp(t) +wn)
AwCE = (wa(t) — wp(t) —wp)

and

8.0 = 1/2((Sa,z = S,2) /2 + TH2)
SzCEi 1/2(( a,z _Sb 2)/2 fnzg)
We can then derive a 6x6 Liouvillian operating on a o (t) vector consisting of the coefficients {s, ) Sy
However, to combine these coefficients with the o, (t)+op 5(t) vector we must add two coefﬁcients of two additional

= (273/2)(8,.+ S..) and

CE CE-
+7 Sz

operators with the same norm as S,CE+ and S GCE- , namely the DQ space operators sbe b,z

SPQ = (2 1/2):7DQ with s02 and 529 respectively. ocg becomes {s,“F", s, % sPQ DQ 5 CB+ g OB g CB- 5, CB),

' 2ab,z? On,z1 Y
;\\CE //:CEJr //:CE*

We can now derive the form of the Liouville operator Ly (t) = Ly (t) + Ly (t) starting with (the time depen-
dence is omitted here for formatting reasons)

n,z ab,z

[ 5. CF ] I ) 0 00 hSET 0 0 0 7 [s:"]
5.9 5. " 0 0 00 0 0 h" 0 5.9
03 03 0 0 00 0o 0 0 0 o3

d | sp2 | 77| spe | 0 0 00 0 0 0 0 sDQ
dt syC’EJr —TCR syCE+ o —hSE+ 0 00 0 AwCEF 0 0 5yCE+
5, OB+ 5, OB 0 0 0 0 AwCE* 0 0 0 5, CB
5, CF" 5, 0 —h“F 00 0 0 0 AWE ||, OB
5., OB s, CE L0 0 00 0 0 Aw 0 ]| 5,08

CE CE CE-
+7 S +7 Sy )
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When we want to combine this vector with the o, (t) + op,;(t) vector we have to perform the following transfor-

mation in order to reach the elements {s, », Sp 2, Sn,z, S2°°, syCE+, szCE+, syCE', sICE'}:
[ Sas ] (1 1 v2 0 00007 [8.°%]
Sb, -1 -1+v2 0 0000 s, °F
Sn,z “1 1 0 v20000] | s
Lposi™ | 11 1 -1 0 +v20000 Sp
20 1 "4 0 0 0 0 1000]]s°E|"
YRt Yops
Se 0 0 0 0 0100/ /s
Sy~ 0 0 0 00010 s, OF
[ 5,9 0 0 0 0 000 1] [ s,°F |

where we have added the operator §;CS = f?Q - fZZQ = 4fz§a72§b7z to maintain the dimensionality of the vector
after the transformation. After the transformation of Eq. 14 becomes (the time dependence is omitted here for

formatting reasons)

[ Sa.s 0 0 0 0 ThSET 0 Tha O 0 [ Sa.

S,z 0 0 0 0  —iplEF 0 —1p, OB 0 S,z

Sn. 0 0 0 0 —%hgm 0 ip, CB- 0 Sn.z

d | s | 0 0 0 0 ThSET 0 —1p CE- 0 sres
a SyCE+ - 7th+ 7th+ thJr 7th+ 0 7AWCE+ 0 0 syCE+
s, CE+ 0 0 0 0 AwCE* 0 0 0 5, 00"
SyCE- _thE— thE— _thE— thE— 0 0 0 — AwCE- SyCE-

[ 5.9 0 0 0 0 0 0 AwCE 0 L 5.9

CE+£
D )

to the last vector. In practice it turns out that the value s7°(¢), which is the coefficient of the tri-linear §;es =

Joining the elements of ocg with the elements of 0, + op/; we have to add the {s°, s p = z,y} coefficients

4]: §a,z§b7z operator that is initially equal to zero, does not contribute to the time dependence of the other coefficients
and it can be ignored during the calculations. This was shown in equation 36-37 in ref [10]. The operators involved
in this derivation can all be expressed in terms of the z-components of the electron and nuclear angular momentum
operators:

. 1 4 5 L3 g T
SOBT = (579 + 487 = (S = S.2) (1 + 20 2)

a 1,4 -~ 1~ N N
S, CE = 5(53‘9 —45%9Q) = Z(SW —S.)(1—21,,..)

S?Q = ﬁ(smz + b,Z)
aDQ 1 7DQ I -~ g aQ
Sn z — ﬁln,z = ﬂlmz(l + 4Sa7zsb7z)

In general, CE rotor-events are usually fast and it is usually possible to assess the amount of polarization, that is
transferred between the spins using the LZ approximation. If the off-diagonal element lead to a crossing of efficiency:

CE|2
€cBx = [46XP |~/ =\
2 CE

-1

then the LZ approach can be applied to describe the CE events using the S, CE+ (t) and S, CE- (t) coefficients. Adding
the s”2 and 858 elements the crossing can be represented as:

ab,z
sg“ cce— 0 00 ngJr
E— E—
S 0 ecg— 00 S
;DbQ (tﬁ—l) = 0 0 10 SZDbQ (tkfl)
o) 0 0 01]]| sPQ
n,z n,z
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7¢s coefficient, we obtain:

using the above transformations, and ignoring the s

Sa,z ~LZ | Sa,z 1 3+ €cE+ 1—ecpx £(1—e€ces) Sq,z(tk=1)
Sps | (tht1) = Log | S,z | (the1) = 1 1 —ece+ 3+ecex  F(1—ecpx) Sp»(tk—1)
Sn,z Sn,z :t(]- - 6CE:I:) :F(]- - 6CE:I:) 3 + €ECE+ Sn,z(tkfl)

N //:D-J //;CE+ //:CE*
The combine (L;, + L, + L., + Ly, )is at this point in the discussion is of a dimension (3 x 3), the number
of spins in the system.

4. The SE rotor-events

The SE rotor-events occur when the pw irradiation is “on resonance” with, for instance, the electron a - nucleus
zero quantum transition |ag xpfn) > |BaXxpan)or double quantum transition |aya) <+ |Sxa) which correspond to the
matching conditions (W, —wyw = wy) Or (Wq —Wyw & —wy,) respectively. The hyperfine interaction between electron
a and the nucleus n can be represented by the secular and the pseudo-secular terms in the Hamiltonian, which are
assumed to be much smaller than the nuclear Zeeman interaction (high field approximation). The application of
perturbation theory allows diagonalizing the Hamiltonian, shifting the energy levels by an amount of the order of
nur = {AT(t)? + A=(t)?/w2}. As shown previously, for instance by Corzilius et al. [11], such an effect can be
accounted for by replacing the the §7, operator of the pyw Hamiltonian by:

So = 8o+ (1/2mur{(STL; + 8717) + (SH L + S, 1))

The two additional terms become significant in the rotating frame Hamiltonian when the uw frequency is close to the
ZQ and DQ transition frequencies. Ignoring for simplicity the energy shifts induced by the hyperfine interactions,
we can write the following effective Hamiltonians:

ﬁZQ = (1/2)Aw%g(§a,z - IAn,Z) + (1/2)w§E(§a+f7: + S\;fﬁr) ) Aw%g = (Wa(t) + Wyw —wn) W§E = NHFW1
}AIDQ = (1/2)Aw%%(§a,z +Inz) + (I/Q)WfE(SjIﬁL +8., 1) Aw%% = (Wa(t) + Wyw —wn) W§E = NHFW1

which represent the two ZQ- and DQ-SE events with x, = a3, 8. The Liouville operators corresponding to these
Hamiltonians must be represented in the appropriate s(") representations. Similarly to the CE events, we can
choose the two representations {s%®, SZQ, s%Q) and {sDQ, syDQ, sDQY where these coefficients corresponding to the
following operators in the density matrix expansion are:

§2 = (1S, + 8,11 5 B = /(BT - S, T
P = (1/2)(Si L + 87 L) 5 8P = (/2SI - 5. T)
8200 = (1/2)(8a. — Ln2) 5 8P = (1/2)(8as + L)

The Liouville operators take the form

§4Qa [sZ2Qa [ 0 —wPE(t) 0 0] [ s%Qe
d séQ“ :EZQa(t) ng“ _ | —wiB ) 0 —Awzq(t) 0 ng“
at | s2Qa SB §2Qa 0 Auwgglt) 0 0 | &9
sDQa i sDQa | i 0 0 0 0 sDQa
T e [ER] [ <0 L0 0
d s% I s% _ | et 0 —Awpq(t) 0 s%
dt | sDQe SE sDQa 0 Awpq(t) 0 0 sDQa
nga i nga ] | 0 0 0 0 s?Qa
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These equations can be transformed to the basis {sq4 2, Sn.zs s2Qa, s%Qa, syDQa, sIDQ“} via the definitions of §ZZQ/DQa

Yy
Sa,z Sa,z 0 0 LU?E(t) 0 UJ?E(t) 0 Sa,z
Sn,z Sn,z 0 0 UJ?E(t) 0 (U§E(t) 0 Sn,z
d | sg | 2% hsye | —wfB(0)/2 wiB ()2 0 —Awzglt) 0 0 s7Q0
dt s%Qa =Ly (1) s%Q“ - 0 0 Awzq(t) 0 0 0 S%Qa
sDQa sDQa —wiB(t)/2 —wiB(t)/2 0 0 0 —Awpq(t) sDQa
séQ“ s%Qa 0 0 0 0 Awpq(t) 0 3%‘9‘1
apw

To include the SE to the previous description, we need to complement the manifold of 14 coefficients of (Lg +
~D-]  ACE ~pw  aD-J  ACE  ASE

Ly +Lp ) with {s2Q, s%Qa sDQa gDQe} to reach the final 18 x 18 Liouville operator (Ly +Lg +Lp +Lg ).

In general the SE events are relatively short in duration, and thus can be represented by the Landau-Zener
approach. We obtain:

SgQa £Q nga nga 1 0 sz“
|:SZDQ(L (th—1) = %E 1] | sDQa (ths1) $DQa (th—1) = 0 egga $DQa (tht1)
with
_ eff |2
€sE = |2exp mlwi”| —1

dwpq/zq
2 (enguze
~LZ

If we know perform a basis change ,we can rewrite the effect of the propagator Ugy in the basis {52, s%}:

z)y<zJ)

[ Sa,z } (thy1) = EISEK {s‘“z } (tr)

Sn,z Sn,z

with

. SE 7Q 7Q DQ DQ
5 {1+e§5 1—6§5:| or { 1+6513EQ —1+ESQE
o 1—€esr 1+e€gp —1+esp l+egq

for ZQ-SE and DQ-SE rotor-events respectively.
5. Reduced “Bloch operator” and “LZ operator”

In order to compute MAS-DNP mechanisms, we need to derive Liouville operators but we also need to account
for all relaxation pathways, namely the longitudinal and transverse relaxation times of the electrons 77, 75 and
the nucleus T7', T3'. Previous work on MAS description of T} and the T» relaxation used in in DNP simulations
[1, 10, 12] used definitions in the eigenbasis of the Hamiltonian. While this has little impact on the T; for high
magnetic field and MAS simulations, it has more drastic effect on T,. This is particularly critical for the D-J rotor-
events as it impacts T3 ;s definition. To be more specific let’s consider two electrons with a frequency offset of the
same magnitude as the D-J interaction. The eigenbasis of the 3 spin system is then |aax), a1 (t)|aBx) + a2(t)|Bax),
az(t)|aBx) — a1(t)|Bax) and |5Bx), where a1 (t) and az(t) depends on the offset and the D-J interaction. x stands
for the nuclear state (either alpha or beta) and will be ignored in the following). During the dipolar rotor-event,
the T3, involves the loss of the coherence between the states ai(t)|af) + az2(t)|Ba), az(t)|aB) — ai(t)|Ba). In
the eigenbasis Ty ;o depends therefore on the state mixing and becomes offset dependent: ie. 1/T3,4(t)
la3(t) — a3(t)|. Notably 1/T¢ 7q 18 equal to zero when the two electrons are on resonance and equal to 1/275 when
offset term dominates. Nevertheless, the T3 7 relaxation parameter was held constant in the present work, and
simply approximate to Ty ;o = 2775 since it gives correct results as compared to Full Liouville calculations. In the
CE and SE rotor-event case, the treatment of relaxation appear to be even less critical. The state mixing only
occurs for very short time periods contrary to the D-J rotor-events. To achieve complete analogy with the full
Liouville calculations, we define Th cp = T5 /2 + T3 and Th g = (T + 15") /2.

Assuming that the rotor-events are independent, the previous derivations can be combined into a single evolution
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operator, sum of all individual operators.

ApW ~D-J ~CE ~SE

In the end, the o vector can be represented with the following coefficients {1,s, 2,54y, Sa,x; 8b,25 Sby» Sb.zs
Sn z,szQ y,szQ o CE+ CE+ SSE_ CE—. DQ“ DQ“ ZQa ZQ“} within the corresponding to the basis {E Sa 2
Sa,ya Sa \ T Sb 2 Sb WY Sb ,Ty SZQ Y SZQX n,zs qujEJr SCE+ SCE7 SCE S\DQG SDQa SZQa S%Qa}' This approach
yields an homogeneous master equation, which allows computlng efﬁmently the propagator of a periodic problem

with significant time-savings. Finally the (restricted) Liouvillian becomes (time dependence of interactions is
omitted):

r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sel /TR, —UTE, w1 0 0 0 0 Dap 0 0 hCE+/a 0 hCE=/4 0 WPk 0 WPk
0 —wyp  —YT§ —Awa 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 —Away —1/T§ 0 0 0 0 0 0 0 0 0 0 0 0 0
syL/TE 0 0 0 —YTf, w1 0 —Dg 0 0 —nGEt/a 0 hCE=/4 0 0 0 0
0 0 0 —wyp  —YT§ —Awa 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 —Awa —1/T§ 0 0 0 0 0 0 0 0 0 0
0 ~Dgp/2 O 0 Dgp/2 O 0 —2T§yq —Awp O 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 Awp 0 0 0 0 0 0 0 0 0
ILp=| 83, /mp 0 0 0 0 0 0 0 0 —y1] —n$Et/a 0 hCE—/a 0 WPk 0 —wPE
0 -n$E+ 0 o aSET o 0 0 0o wSET —omy op —Awdy 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 Awlp  —2/Ts cm 0 0 0 0 0
CE— CE— CE— ' —
0 —h$ 0 0 hG 0 0 0 0o —n$ 0 0 —2/Ty cr —Awgy 0 0 0
0 SDE 0 0 0 0 0 0 0 SoE 0 0 Awgy  —2/T2 R 0 0 0
0 —wPE2 0 0 0 0 0 0 0o —wPFr2 0 0 0 0 —2/Ty s —Awpq 0
0 o 0 0 0 0 0 0 0 0 0 0 0 0 Awpq —2/Ta sk 0
0 —w$B2 0 0 0 0 0 0 0 wPE/2 0 0 0 0 0 0 —2/Ty s
L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Awzq

For a three spin case, the problem size is reduced from a 64x64 Liouvillian operator to a 18x18 “Bloch-type”
operator which results in massive time savings. The evolution operator at time xdt is given by

N

U, = exp(Lp(kdt) x 6t)

If we neglect the transverse relaxatlon tlmes the problem size can be further reduced to 4 x 4 using the Landau-
Zener approach, in the basis E Sa 2 sz7 n,z- This results in further massive time-savings but also limits the

accuracy of the simulations. The relaxation can then be introduced using Ry defined as

0 0 0 0
= t)/T¢, —1/T¢f 0 0
Rl (t) _ ( )/ le,a / 1,a .
Sb z(t)/Tl,b 0 _1/T1,b 0
syl () /17 0 o -1/17
Then
~ ~pw  ~D-J ~CE ~SE

Ui = eXp(Rl("“St) X 5t)ULz K:ULZ NULZ IiULZ K

where the LZ operator is calculated at each step and applied if two energy levels cross.

C. Effect of Electron dipolar couplings on ez = f(IB)

Figure 1 represents the effect of the electron dipolar interaction on the relation between eg and 7. When D,
in creases, the build up becomes shorter, and a much higher polarization can be obtained for the same parameters.
The relation eg = aT’p + b holds, and a is at least a function of the dipolar interaction.
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