Supporting Information of

Computational prediction of high thermoelectric performance in p-type half-Heusler compounds with low band effective mass

Teng Fang,^a Shuqi Zheng,^{*a} Tian Zhou,^a Lei Yan,^a and Peng Zhang^b

^aState Key Laboratory of Heavy Oil Processing, Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249, People's Republic of China.

^bSchool of Space Science and Physics, Shandong University, Weihai 264209, People's Republic of China

Deformation potential (DP) theory:

For an isotropic band system,^[1] the carrier mobility μ and scatter time τ can be expressed as:

$$\mu = \frac{2\sqrt{2\pi}eh^4 c_{ii}}{3(k_B T)^{3/2} m_b^{*5/2} \Xi^2}$$
(S1)

$$\tau = \frac{\mu m_b^*}{e} = \frac{2\sqrt{2\pi} h^4 c_{ii}}{3\left(k_B T m_b^*\right)^{3/2} \Xi^2}$$
(S2)

where c_{ii} is the lattice elastic constant (i = 1, 2, 3). The band effective mass tensor $m_{k,l}^* = h^2 / \left[\partial^2 E / \partial k_k \partial k_l \right]$ of holes along the three directions are calculated near the valence band single edge. The effective band mass for the ith band is given by $m_{h,i}^* = \sqrt[3]{m_{11}^* \cdot m_{22}^* \cdot m_{33}^*}, (k = l = 1, 2, 3).$ The deformation potential constants for holes are calculated as ∂E .

$$\Xi = \frac{\partial L_{edge}}{\partial (\Delta a) / a_0}$$
, where E_{edge} is the energy of the VBM, a_0 is the lattice constant, $\Delta a = a - a_0$ is the

corresponding lattice distortion. The deformation potential constant Ξ represent the shift of band edges per unit strain.

^{*}Corresponding author. Tel.: +86 010 89733200; Fax: +86 010 89733973.

E-mail address: <u>zhengsq09@163.com</u> (Shuqi Zheng).

Lorenz number calculation:

In the SPB model^[2] and assuming carriers are mostly scattered by acoustic phonons, the Lorenz number is

$$L = \left(\frac{k_B}{e}\right)^2 \frac{3F_0(\eta)F_2(\eta) - 4F_1^2(\eta)}{F_0^2(\eta)}$$
(S3)

where $F_n(\eta) = \int_0^\infty \frac{x^n dx}{1 + \exp(x - \eta)}$ is the Fermi integrals and η is the reduced chemical potential. η is

derived from the measured Seebeck coefficient via

$$S = \frac{k_B}{e} \left(\frac{2F_1(\eta)}{F_0(\eta)} - \eta \right)$$
(S4)

Slack's expression:

According to Slack's expression,^[3] the lattice thermal conductivity can be given as:

$$\kappa_{L} = A \frac{\overline{M} \Theta_{D}^{3} V_{per}^{1/3}}{\gamma^{2} n^{2/3} T}$$
(S5)

where \overline{M} is the average atomic mass, Θ_D is the Debye temperature, V_{per} is the volume per atom, *n* is the number of atoms in the primitive cell, and *A* is a physical constant $\approx 3.1 \times 10^{-6}$ when the units of κ_L , \overline{M} , and $V_{per}^{1/3}$ are taken as Wm⁻¹K⁻¹, amu, and angstroms, respectively. γ is Grüneisen parameter calculated by the DFPT combined with the quasi-harmonic approximation (QHA):

$$\gamma = \frac{3\beta BV_m}{C_v} \tag{S6}$$

where β is the linear thermal expansion coefficient, *B* is the bulk modulus, V_m is the molar volume, and C_v is the isometric heat capacity, which can be calculated from the phonon dispersions:

$$C_{v} = \sum_{n,\mathbf{q}} k_{B} \left(\frac{h\omega_{n}\left(\mathbf{q}\right)}{k_{B}T} \right)^{2} \frac{e^{h\omega_{n}\left(\mathbf{q}\right)/k_{B}T}}{\left(e^{h\omega_{n}\left(\mathbf{q}\right)/k_{B}T} - 1\right)^{2}}$$
(S7)

where $\omega_n(\mathbf{q})$ is the phonon frequency of the *n*-th branch with wave vector \mathbf{q} . It is noted that we specify the volume changes in 3%, 2%, 1%, 0%, -1%, -2%, -3% for the QHA. The Debye temperature Θ_D is evaluated from formula on sound velocity v_s :^[4]

$$\Theta_D = v_s \frac{\mathbf{h}}{k_B} \left(6\pi^2 n_a \right)^{1/3}$$
(S8)

where n_a is the number density of atoms. The sound velocity v_s can be calculated by the following formula:^[5]

$$v_{s} = \left[\frac{1}{3}\left(\frac{2}{v_{t}^{3}} + \frac{1}{v_{l}^{3}}\right)\right]^{-1/3}$$
(S9)

where transversal velocity v_t and longitudinal velocities v_l are obtained from equations as follows:

$$v_t = \sqrt{\frac{G}{\rho}}$$
(S10)

$$v_l = \sqrt{\frac{\left(B + \frac{4}{3}G\right)}{\rho}} \tag{S11}$$

where *B*, *G*, and ρ are the bulk modulus, the shear modulus, and the density, respectively. According to the Voigt-Reuss-Hill approximation,^[6] *B* and *G* can be expressed as:

$$B = \frac{c_{11} + 2c_{12}}{3} \tag{S12}$$

$$G = \frac{G_V + G_R}{2} \tag{S13}$$

$$G_{V} = \frac{c_{11} - c_{12} + 3c_{44}}{5} \tag{S14}$$

$$G_{R} = \frac{5(c_{11} - c_{12})c_{44}}{4c_{44} + 3(c_{11} - c_{12})}$$
(S15)

where c_{11} , c_{12} , and c_{44} are three independent elastic constants for cubic lattice.

Klemens's Model

At temperatures above the Debye temperature, the ratio of the lattice thermal conductivity of a material containing point defects with that of the parent material can be written in the following manner:^[7]

$$\frac{\kappa_L}{\kappa_{L0}} = \frac{\tan^{-1}(u)}{u}$$
(S16)

Here κ_L and κ_{L0} are the lattice thermal conductivity of the defected and parent materials, respectively, and the parameter *u* is defined by:

$$u = \left(\frac{\pi^2 \Theta_D V_{per}}{h v_a^2} \kappa_{L0} \Gamma\right)^{1/2}$$
(S17)

where *h* is the Planck constant. We calculated the disorder scattering parameter, Γ , according to the assumption $\Gamma = \Gamma_m + \Gamma_s$, where the scattering parameters Γ_m and Γ_s are due to mass and strain field fluctuations, respectively. For the ternary half-Heusler compounds, Γ_m and Γ_s are given by:

$$\Gamma_m = \frac{1}{3} \left(\frac{\overline{M}}{\overline{M}} \right)^2 x \left(1 - x \right) \left(\frac{M_1 - M_2}{\overline{M}} \right)^2$$
(S18)

$$\Gamma_{s} = \frac{1}{3} \left(\frac{\overline{M}}{\overline{M}}\right)^{2} x \left(1 - x\right) \varepsilon \left(\frac{r_{1} - r_{2}}{\overline{r}}\right)^{2}$$
(S19)

$$\overline{M} = M_1 \left(1 - x \right) + M_2 x \tag{S20}$$

$$\overline{\overline{M}} = \frac{1}{3} \left(\overline{M} + M_3 + M_4 \right)$$
(S21)

$$\overline{r} = r_1(1-x) + r_2 x$$
 (S22)

where, M_1 and M_2 are the atomic weight of the master atom and substituting atom, respectively; M_3 and M_4 are the atomic weight of undoped atoms; r_1 and r_2 are the atomic radius of the master atom and substituting atom, respectively. For example, in FeNb_{1-x}Ti_xSb system, M_1 , M_2 , M_3 and M_4 are the atomic weight of Nb, Ti, Fe and Sb, respectively; r_1 and r_2 are the atomic radius of Nb and Ti, respectively. x is the content of substituting atom, and ε is regarded as a phenomenological adjustable parameter and is directly estimated by following relationship:^[8]

$$\varepsilon = \frac{2}{9} \left(\frac{6.4 \times \gamma (1 + \upsilon_p)}{\left(1 - \upsilon_p\right)} \right)^2$$
(S23)

where v_p the Poisson ratio, which can be derived from the longitudinal (v_l) and transverse (v_l) sound velocities by the relationship as:

$$\nu_{p} = \frac{1 - 2(\nu_{t}/\nu_{l})^{2}}{2 - 2(\nu_{t}/\nu_{l})^{2}}$$
(S24)

Table S1. The calculated lattice constant (*a*), zero-pressure bulk modulus (B_0) of Ru*M*Sb (M=V, Nb, Ta) HH compounds in the conventional cell. The lattice constant (*a*) and zero-pressure bulk modulus (B_0) were obtained by fitting the calculated total energy-atomic volume (E–V) results to the Murnaghan equation of state (EOS). Experimental^[9] and calculated^[10] data for comparison are also given.

Materials	Reference	<i>a</i> (Å)	B_0 (GPa)	$E_g (\mathrm{eV})$
RuVSb	this work	6.046	162	0.199
	literatures	6.065 ^[9]	/	0.223 ^[10]
RuNbSb	this work	6.200	169	0.358
	literatures	6.137 ^[9]	/	0.362 ^[10]
RuTaSb	this work	6.192	177	0.651
	literatures	6.135 ^[9]	/	0.655 ^[10]

Table S2. The energy difference Δ between these two maxima in valence bands and the corresponding carrier concentration *n* when the energy gap is crossed by the Fermi level.

Materials	RuVSb	RuNbSb	RuTaS	FeNbSb
			b	
Δ (eV)	0.21	0.32	0.34	0.36
$n (10^{21} \text{ cm}^{-3})$	4.3	5.0	5.9	11.7

Table S3. The calculated effective masses using the curvature of the valence bands. The values related to the transport properties are given with the unit of m^*/m_e . Three values are calculated along different directions. Table S3 shows the calculated effective masses of Ru*M*Sb (*M*=V, Nb, Ta) along different directions are all lower than that of FeNbSb. The calculated results of FeNbSb here are in good agreement with the calculated ones in Ref. [11].

Compound	band	<i>m*/m_e</i>	<i>m*/m_e</i>	<i>m*/m_e</i>	*/100
		LW	LK	LΓ	m_b / m_e
DuVSh	VBM-light	0.4	0.4	1.5	0.6
KUV SD	VBM-heavy	0.6	0.6	1.6	0.8
RuNbSb	VBM-light	0.3	0.3	1.2	0.5
	VBM-heavy	0.4	0.4	1.3	0.6
RuTaSb	VBM-light	0.3	0.3	1.4	0.5
	VBM-heavy	0.4	0.4	1.4	0.6
FeNbSb	VBM-light	0.5	0.5	2.1	0.8
	VBM-heavy	0.7	0.7	2.1	1.0

Table S4. The optimized power factor values (PF_{opt}) and the corresponding optimal carrier concentration (n_{opt}) for Ru*M*Sb (M = V, Nb, Ta) compounds at high temperature of T = 800K. The values for FeNbSb are also shown for comparison.

Compound	$PF_{opt} (10^{-3} \text{ W m}^{-1} \text{ K}^{-2})$	$n_{opt} (10^{21} \mathrm{cm}^{-3})$
RuVSb	6.1	5.0
RuNbSb	11.6	2.5
RuTaSb	11.3	4.4
FeNbSb	5.5	2.8

Figure S1. The projected DOS for (a,b,c) Ru atoms, (d,e,f) M atoms, and (g,h,i) Sb atoms in Ru*M*Sb (M = V, Nb, Ta) compounds.

Figure S2. The temperature dependence of (a) electrical conductivity σ , (b) Seebeck coefficient *S*, (c) thermal conductivity κ and (d) *zT* value of Ru*M*Sb (M = V, Nb, Ta) at optimal carrier concentration. The values of FeNbSb are also shown for comparison. The total thermal conductivity κ consists of those from electrons (κ_e) and lattice (κ_L). In order to attain the maximum *zT* value, we used the minimum lattice thermal conductivity κ_{min} , which can be calculated^[12] via

$$\kappa_{\min} = \frac{1}{2} \left[\left(\frac{\pi}{6} \right)^{1/3} \right] k_B \left(V \right)^{-2/3} \left(2v_t + v_l \right),$$
 where *V* is the average volume per atom, k_B is the Boltzmann

constant, v_t and v_l are the transversal and longitudinal velocities, respectively. The κ_{min} of RuVSb,

RuNbSb, RuTaSb and FeNbSb are 0.82, 0.81, 0.75 and 0.96 W m⁻¹ K⁻¹, respectively.

Figure S3. The calculated (a) electrical thermal conductivity κ_e and (b) lattice thermal conductivity κ_L versus temperature for FeNb_{0.92}Ti_{0.08}Sb ($n = 1 \times 10^{21}$ cm⁻³) and comparison with the experimental values.^[11] (c) The calculated and experimental κ_L versus temperature for FeNb_{0.92}Zr_{0.08}Sb ($n = 1.2 \times 10^{21}$ cm⁻³) and FeNb_{0.92}Hf_{0.08}Sb ($n = 1.3 \times 10^{21}$ cm⁻³). (d) The calculated κ_L versus temperature for RuTaSb_{0.92}(Ge, Sn, Pb)_{0.08}. In order to calculate the κ_L of RuTaSb containing point defects, we assume that the doping efficacy of Ge/Sn/Pb dopants is equal to that of Ti doping at FeNbSb, i. e. the carrier concentration of RuTaSb_{0.92}(Ge, Sn, Pb)_{0.08} is 1×10^{21} cm⁻³.

Figure S4. The calculated zT versus temperature for (a) FeNbSb and (b) RuTaSb at different carrier concentration *n* from 0.5 to 2.0 ×10²¹ cm⁻³. Clearly, the calculated zT of FeNbSb at 1200K increase with the increasing carrier concentration, while the maximum zT (zT_{max}) of RuTaSb at 1200K is obtained at $n = 1.0 \times 10^{21}$ cm⁻³.

References

- [1] J. Bardeen, and W. Shockley, *Phys. Rev.*, 1950, **80**, 72.
- [2] A. F. May, E. S. Toberer, A. Saramat, and G. J. Snyder, *Phys. Rev. B*, 2009, **80**, 125205.
- [3] G. A. Slack, J. Phys. Chem. Solids., 1973, 34, 321.
- [4] D. G. Cahill, S. K. Watson, and R. O. Pohl, *Phys. Rev. B*, 1992, 46, 6131.
- [5] O. L. Anderson, J. Phys. Chem. Solids., 1963, 24, 909.
- [6] R. Hill, Proc. R. Soc. London, Ser. A, 1952, 65, 349.
- [7] C. G. Fu, H. H. Xie, T. J. Zhu, J. Xie, and X. B. Zhao, J. Appl. Phys, 2012, 112, 124915.
- [8] C. L. Wan, W. Pan, Q. Xu, Y. X. Qin, J. D. Wang, Z. X. Qu, M. H. Fang, *Phys. Rev. B*, 2006, 74, 144109.
- [9] C. B. Evers, C. G. Richter, K. Hartjes, W. Jeitschko, J. Alloys. Compd., 1997, 252, 93.
- [10] J. Yang, H. M. Li, T. Wu, W. Q. Zhang, L. D. Chen, and J. H. Yang, Adv. Funct. Mater., 2008, 18, 2880.
- [11] C. G. Fu, T. J. Zhu, Y. T. Liu, H. H. Xie, and X. B. Zhao, *Energy Environ. Sci.*, 2015, 8, 216.
- [12] D. G. Cahill, S. K. Watson, P. Ro, *Phys. Rev. B*, 1992, **46**, 6131.