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Deformation potential (DP) theory:

For an isotropic band system,[1] the carrier mobility µ and scatter time τ can be expressed as:
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where cii is the lattice elastic constant (i = 1, 2, 3). The band effective mass tensor 

 
of holes along the three directions are calculated near the valence band * 2 2

, / /k l k lm E k k     h

edge. The single band effective mass for the ith band is given by 

. The deformation potential constants for holes are calculated as * * * *3
, 11 22 33 , 1,2,3b im m m m k l    

, where Eedge is the energy of the VBM, a0 is the lattice constant, Δa = a - a0 is the 
  0/

edgeE
Ξ

a a



 

corresponding lattice distortion. The deformation potential constant Ξ represent the shift of band 

edges per unit strain.
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Lorenz number calculation:

In the SPB model[2] and assuming carriers are mostly scattered by acoustic phonons, the 

Lorenz number is
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derived from the measured Seebeck coefficient via
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Slack’s expression:

According to Slack’s expression,[3] the lattice thermal conductivity can be given as:
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where is the average atomic mass, ΘD is the Debye temperature, Vper is the volume per atom, n M

is the number of atoms in the primitive cell, and A is a physical constant ≈ 3.1×10−6 when the units 

of κL, ,and are taken as Wm−1K−1, amu, and angstroms, respectively. γ is Grüneisen M 1/3
perV

parameter calculated by the DFPT combined with the quasi-harmonic approximation (QHA):
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where β is the linear thermal expansion coefficient, B is the bulk modulus, Vm is the the molar 

volume, and Cv is the isometric heat capacity, which can be calculated from the phonon 

dispersions:
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where ωn(q) is the phonon frequency of the n-th branch with wave vector q. It is noted that we 

specify the volume changes in 3%, 2%, 1%, 0%, -1%, -2%, -3% for the QHA. The Debye 

temperature ΘD is evaluated from formula on sound velocity vs:[4]
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where na is the number density of atoms. The sound velocity vs can be calculated by the following 

formula:[5]
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where transversal velocity vt and longitudinal velocities vl are obtained from equations as follows:
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where B, G, and ρ are the bulk modulus, the shear modulus, and the density, respectively. 

According to the Voigt-Reuss-Hill approximation,[6] B and G can be expressed as:

                               (S12)11 122
3

c cB 


                               (S13)
2

V RG GG 


                            (S14)11 12 443
5V

c c cG  


                          (S15) 
 

11 12 44

44 11 12

5
4 3R

c c c
G

c c c



 

where c11, c12, and c44 are three independent elastic constants for cubic lattice.

Klemens’s Model

At temperatures above the Debye temperature, the ratio of the lattice thermal conductivity of 

a material containing point defects with that of the parent material can be written in the following 

manner:[7]
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Here κL and κL0 are the lattice thermal conductivity of the defected and parent materials, 

respectively, and the parameter u is defined by:
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where h is the Planck constant. We calculated the disorder scattering parameter, Γ, according to 

the assumption Γ = Γm + Γs, where the scattering parameters Γm and Γs are due to mass and strain 

field fluctuations, respectively. For the ternary half-Heusler compounds, Γm and Γs are given by:
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where, M1 and M2 are the atomic weight of the master atom and substituting atom, respectively; M3 

and M4 are the atomic weight of undoped atoms; r1 and r2 are the atomic radius of the master atom 

and substituting atom, respectively. For example, in FeNb1-xTixSb system, M1, M2, M3 and M4 are 

the atomic weight of Nb, Ti, Fe and Sb, respectively; r1 and r2 are the atomic radius of Nb and Ti, 

respectively. x is the content of substituting atom, and ε is regarded as a phenomenological 

adjustable parameter and is directly estimated by following relationship:[8]
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where υp the Poisson ratio, which can be derived from the longitudinal (vl) and transverse (vt) 

sound velocities by the relationship as:
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Table S1. The calculated lattice constant (a), zero-pressure bulk modulus (B0) of RuMSb (M=V, 

Nb, Ta) HH compounds in the conventional cell. The lattice constant (a) and zero-pressure bulk 

modulus (B0) were obtained by fitting the calculated total energy-atomic volume (E–V) results to 

the Murnaghan equation of state (EOS). Experimental[9] and calculated[10] data for comparison are 

also given.

Materials Reference a (Å) B0 (GPa) Eg (eV)

RuVSb this work 6.046 162 0.199

literatures 6.065[9] / 0.223[10]

RuNbSb this work 6.200 169 0.358

literatures 6.137[9] / 0.362[10]

RuTaSb this work 6.192 177 0.651

literatures 6.135[9] / 0.655[10]

Table S2. The energy difference  between these two maxima in valence bands and the 

corresponding carrier concentration n when the energy gap is crossed by the Fermi level.

Materials RuVSb RuNbSb RuTaS

b

FeNbSb

 (eV) 0.21 0.32 0.34 0.36

n (1021 cm-3) 4.3 5.0 5.9 11.7



Table S3. The calculated effective masses using the curvature of the valence bands. The values 

related to the transport properties are given with the unit of m*/me. Three values are calculated 

along different directions. Table S3 shows the calculated effective masses of RuMSb (M=V, Nb, 

Ta) along different directions are all lower than that of FeNbSb. The calculated results of FeNbSb 

here are in good agreement with the calculated ones in Ref. [11].

m*/me m*/me m*/meCompound band
LW LK LΓ

mb
*/me

VBM-light 0.4 0.4 1.5 0.6
RuVSb

VBM-heavy 0.6 0.6 1.6 0.8
VBM-light 0.3 0.3 1.2 0.5

RuNbSb
VBM-heavy 0.4 0.4 1.3 0.6
VBM-light 0.3 0.3 1.4 0.5

RuTaSb
VBM-heavy 0.4 0.4 1.4 0.6
VBM-light 0.5 0.5 2.1 0.8

FeNbSb
VBM-heavy 0.7 0.7 2.1 1.0

Table S4. The optimized power factor values (PFopt) and the corresponding optimal carrier 

concentration (nopt) for RuMSb (M = V, Nb, Ta) compounds at high temperature of T = 800K. The 

values for FeNbSb are also shown for comparison.

Compound
PFopt (10-3 W m-1 K-

2)
nopt (1021 cm-3)

RuVSb 6.1 5.0

RuNbSb 11.6 2.5

RuTaSb 11.3 4.4

FeNbSb 5.5 2.8 



Figure S1. The projected DOS for (a,b,c) Ru atoms, (d,e,f) M atoms, and (g,h,i) Sb atoms in 
RuMSb (M = V, Nb, Ta) compounds.

Figure S2. The temperature dependence of (a) electrical conductivity σ, (b) Seebeck coefficient S, 

(c) thermal conductivity κ and (d) zT value of RuMSb (M = V, Nb, Ta) at optimal carrier 

concentration. The values of FeNbSb are also shown for comparison. The total thermal 

conductivity κ consists of those from electrons (κe) and lattice (κL). In order to attain the maximum 

zT value, we used the minimum lattice thermal conductivity κmin, which can be calculated[12] via 

, where V is the average volume per atom, kB is the Boltzmann 
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constant, vt and vl are the transversal and longitudinal velocities, respectively. The κmin of RuVSb, 



RuNbSb, RuTaSb and FeNbSb are 0.82, 0.81, 0.75 and 0.96 W m-1 K-1, respectively.

Figure S3.  The calculated (a) electrical thermal conductivity κe and (b) lattice thermal 

conductivity κL versus temperature for FeNb0.92Ti0.08Sb (n = 1×1021 cm-3) and comparison with the 

experimental values.[11] (c) The calculated and experimental κL versus temperature for 

FeNb0.92Zr0.08Sb (n = 1.2×1021 cm-3) and FeNb0.92Hf0.08Sb (n = 1.3×1021 cm-3). (d) The calculated 

κL versus temperature for RuTaSb0.92(Ge, Sn, Pb)0.08. In order to calculate the κL of RuTaSb 

containing point defects, we assume that the doping efficacy of Ge/Sn/Pb dopants is equal to that 

of Ti doping at FeNbSb, i. e. the carrier concentration of RuTaSb0.92(Ge, Sn, Pb)0.08 is 1×1021 cm-3.

Figure S4. The calculated zT versus temperature for (a) FeNbSb and (b) RuTaSb at different 

carrier concentration n from 0.5 to 2.0 ×1021 cm-3. Clearly, the calculated zT of FeNbSb at 1200K 

increase with the increasing carrier concentration, while the maximum zT (zTmax) of RuTaSb at 

1200K is obtained at n = 1.0 ×1021 cm-3.
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