Supplementary Information for:

Jones Oxidation of Glycerol Catalysed by Small Gold Clusters

Anthony M. Pembere, Zhixun Luo*

State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. Email: <u>zxluo@iccas.ac.cn</u>

♦ Experimental details.

Figure S1. ESI-MS spectra (positive mode) of glycerol after laser ablation without gold rod, (concentrated with rotary evaporation) and at the addition of 0.15 ml volume of H_2O_2 (30%) and 20 mg NaOH (1M).

Figure S2. ESI-MS spectra of glycerol after reaction with 0.15 ml volume of H_2O_2 (30%) and 20 mg NaOH (1M), (without laser ablation).

Calculation details

Figure S3. Structures of most stable isomers of Au₄. Inter-atomic distances are given in angstroms.

NAO	Atom	No.	Lang	Type(AO)	Occupancy
38	Au	2	dxz	Ryd(6d)	0.00007
39	Au	2	dyz	val(5d)	1.91151

Table S1. HOMO-LUMO orbitals in ${\sf Au}_4$

Figure S4. Structures of the most stable isomers of Au₅. Inter-atomic distances are given in angstroms.

NAO	Atom	No.	Lang	Type(AO)	Occupancy
47	Au	3	S	Ryd(7S)	0.00079
48	Au	3	Рх	Cor(5p)	1.99947

Table S2. HOMO-LUMO orbitals in Au_{5.}

Figure S5. Alternative reaction coordinate of "glycerol+ Au_4 " involving elimination of two hydrogen atoms on glycerol over Au_4 to form glyceraldehyde. H atom from the -OH group of the terminal carbon atom adsorbs onto No.3 Au atom site. Atoms in yellow, red, grey and white colour represent Au, O, C and H respectively.

We have also compared with the reaction pathways for glycerol dehydration to form 3hydroxylpropionaldehyde, and followed by oxidation to produce glyceraldehyde, as shown in Figure S6. As results, the calculated activation energy for the initial dehydration step is 0.03 eV, allowing the middle carbon of 3- hydroxylpropionaldehyde to be attached to the oxygen atom of Au₄O*. The following reaction step is the insertion of an oxygen atom into the C-H bond, showing an energy gain of 0.03 eV (E_{f-e}), while desorption of glyceraldehyde from Au₄ has an activation energy, $\triangle G$, equaling to -1.18 eV.

Figure S6. Reaction coordinates involving, step I: glycerol dehydration over Au_4 to 3-hydroxylpropionaldehyde, step II: oxidation of 3-hydroxylpropionaldehyde by Au_4O^* to form glyceraldehyde. Atoms in yellow, red, grey and white colour represent Au, O, C and H respectively.

Considering that the reactivity in catalysis could change dramatically with the addition or removal of even a single atom, we have also investigated the interaction H_2O_2 over Au_{5} .

Figure S7: (Upper) SOP theory analysis of Fock matrix in NBO donor–acceptor (overlap) interactions in $Au_5-H_2O_2$ complex, and (Below) the reaction coordinate of O-transfer from H_2O_2 to Au_5 to form Au_5O^* . Atoms in yellow, red, grey, and white colours represent Au, O, C and H respectively.

Figure S8: (Upper) Second-order-perturbation theory analysis of Fock matrix in NBO donor–acceptor (overlap) interactions in Au₅o*–glyceraldehyde complex, and **(below)** the reaction coordinate involving oxidation of glyceraldehyde to glyceric acid over Au₅. Atoms in yellow, red, grey and white colours represent Au, O, C and H respectively.

Table S3. The Sum of electronic and zero point energies (a.u.) of gold clusters, reactants and products, calculated with different methods and basis sets.

	HF/Lanl2dz	B3lyp/ Lanl2dz	B3lyp/6-31G
Au ₃	-403.62673	-406.41899	
Au ₄	-538.19208	-541.932	
Au ₅	-672.75481	-677.43267	
Au ₂₀	-2691.2344	-2710.0991	
Glycerol	-342.62875	-344.63154	-344.54804
Glyceraldehyde	-341.46472	-343.4293	-343.35138
Glyceric acid	-416.2463	-418.60322	-418.57338
Hydrogen	-1.113708	-1.164262	-1.165337
H ₂ O ₂	-150.71256	-151.49989	-151.44956
Water	-75.988276	-76.393557	-76.365578

Enlarged NBO patterns

Figure S9. Enlarged NBO patterns. A: Second–order–perturbation (SOP) theory analysis of Fock matrix in NBO donor–acceptor (overlap) interactions in Au_4 – H_2O_2 complex. B: SOP theory analysis of Fock matrix in NBO donor–acceptor (overlap) interactions in Au_5 – H_2O_2 complex. Atoms in yellow, red, grey, and white colours represent Au, O, C and H respectively.

Figure S10. Enlarged NBO patterns. A: Second-order-perturbation theory analysis of Fock matrix in NBO donor–acceptor (overlap) interactions in Au_4 –glycerol complex **B**: Second-order-perturbation theory analysis of Fock matrix in NBO donor–acceptor (overlap) interactions in Au_5 –glycerol complex. Atoms in yellow, red, grey and white colours represent Au, O, C and H respectively.

Figure S11. Enlarged NBO patterns. **A:** Second-order-perturbation theory analysis of Fock matrix in NBO donor–acceptor (overlap) interactions in Au_4o^* –glyceraldehyde complex **B:** Second-order-perturbation theory analysis of Fock matrix in NBO donor–acceptor (overlap) interactions in Au_5o^* –glyceraldehyde complex. Atoms in yellow, red, grey and white colours represent Au, O, C and H respectively.