SUPPLEMENTARY INFORMATION

Pentagonal five-center four-electron π bond in ternary B₃N₂H₅ cluster: an extension of the concept of three-center four-electron ω bond⁺

Da-Zhi Li,* ^{§a} Lin-Yan Feng, ^{§b} Ling Pei,^a Li-Juan Zhang,^a Shu-Guo Wu,^a and Hua-Jin Zhai*^{bc}

[§]D.Z. Li and L.Y. Feng contributed equally to this work.

- ^a Binzhou Key Laboratory of Materials Chemistry, Department of Chemical Engineering, Binzhou University, Binzhou 256603, China. E-mail: ldz005@126.com
- ^b Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China. E-mail: hj.zhai@sxu.edu.cn
- ^c State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China

Figure S1. Alternative optimized low-lying structures of $B_3N_2H_5$ neutral cluster at the B3LYP/aug-cc-pVTZ level. Relative energies are indicated in kcal mol⁻¹ at B3LYP with zero-point energy (ZPE) corrections, as well as at the single-point CCSD(T) level (in the parentheses) for top 4 isomers. The B, N, and H atoms are in pink, blue, and gray, respectively.

Figure S2. Alternative optimized low-lying structures of $B_3N_2H_5^-$ monoanion cluster at the B3LYP/aug-cc-pVTZ level. Relative energies are indicated in kcal mol⁻¹ at B3LYP with zero-point energy (ZPE) corrections, as well as at the single-point CCSD(T) level (in the parentheses) for top 4 isomers. The B, N, and H atoms are in pink, blue, and gray, respectively.

Figure S3. Alternative optimized low-lying structures of $B_3N_2H_5^{2-}$ dianion cluster at the B3LYP/aug-cc-pVTZ level. Relative energies are indicated in kcal mol⁻¹ at B3LYP with zero-point energy (ZPE) corrections, as well as at the single-point CCSD(T) level (in the parentheses) for top 4 isomers. The B, N, and H atoms are in pink, blue, and gray, respectively.

Figure S4. Structure and bonding of the chain-like isomer of $B_3N_2H_5^{2-}$. The B–N distances (from left to right) are 1.36, 1.38, 1.27, and 1.50 Å, respectively. Two extra charges are located primarily on the two N centers (26% versus 43%). (a) Optimized C_s (¹A') structure at the B3LYP/aug-cc-pVTZ level. (b) Lewis presentation.

Figure S5. Bonding pattern of the chain-like open structure $C_{\rm s}$ (¹A') of B₃N₂H₅²⁻ dianion cluster, based on the adaptive natural density partitioning (AdNDP) analysis. Occupation numbers (ONs) are shown.

Figure S6. Optimized sandwich complexes of $C_{2h} [(B_3N_2H_5)_2Ni] ({}^1A_g)$ and $C_{2v} [(B_3N_2H_5)_2Ni] ({}^1A_1)$ at the B3LYP level. Calculated lowest vibrational frequencies (v_{min}) are also given. The C_{2h} structure is more stable (by 6.07 kcal mol⁻¹) than the C_{2v} one. The B atom is in pink, N in blue, and H in gray.

 $C_{2h} [(B_3N_2H_5)_2Ni] (^1A_g)$ 114.27 cm⁻¹

 $C_{2v} [(B_3N_2H_5)_2Ni] (^1A_1)$ 100.92 cm⁻¹