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Scheme 1. Synthesis of [BODIPY]-[ZnP]-[C60] dyads: (i) BF5-Et,O, DDQ; (ii) 1. NBS (1e/2e-Br), 2.
Zn(OAc),-2H,0(1e/2e-ZnBr), 3. Pinacolborane, PdCl,(PPhs),, TEA; (iii) TBAF; (iv) 3 (for compound
1b)/ 3 and 4 (for compound 2b), Pd,(dba);, AsPhs; (v) 4-bromobenzaldehyde, Pd(PPh;),, Cs,COs3; vi)
sarcosine, fullerene.



Electrochemistry.

The electrochemical measurements were carried out using a PAR 273A potentiostat. The supporting
electrolyte was 0.1 M tetra-n-butylammonium hexafluorophosphate (TBAPF¢) in anhydrous DCM. The
salt was obtained from Sigma-Aldrich and used without further purification. The measurements were
performed in a three-compartment electrochemical cell. A platinum wire was employed as the counter
electrode, and a freshly polished silver wire as a pseudoreference electrode. Ferrocene (Fc) was added
as an internal reference, and all the potentials were referenced relative to the Fc/Fc* couple. A glassy
carbon disk (0.07 cm?) was used as the working electrode which was polished with alumina (0.3 wm) on
felt pads (Buehler) and treated ultrasonically for 1 min before each experiment. All electrochemical
measurements were carried out under a flow of argon and performed at room temperature. The scan rate

for cyclic voltammetry (CV) was 100 mV/s.

For the reference 1a, it shows three reversible one-electron oxidation process at 0.41, 0.60, and 0.74 V
versus Fc/Fc*, the first and third ones can be attributed to be the oxidation of [ZnP]. unit based on
reference 6 and the second oxidation process can be assigned as the oxidation of [BODIPY] moiety
based on reference 3. For 2a, the CV shows four reversible 1-electron oxidation processes at 0.31, 0.45,
0.63 and 0.78 V vs Fc/Fc'. The first 1-electron oxidation process can be attributed to [ZnP]; based on
reference 5. The second 1-electron process can be assigned to be the oxidation of [ZnP]. and the third
oxidation peak appears to be the oxidation of [BODIPY] based on reference 3. The fourth peak can be
attributed to the overlapping oxidation of both [ZnP]; and [ZnP].. On the reduction side, both 1a and 2a,
show two reversible reduction processes. For both of them, the first 1-electron reduction process can be
the assigned as the overlapping reduction of [BODIPY] and the first reduction of [ZnP], and [ZnP]..!
The second reduction process of them can be attributed to be the second reduction process of [ZnP]; and

[ZnP]..
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Figure S1. Cyclic voltammograms of 1 in DCM, 0.1 M TBAPF,. Scan rate = 100 mV/s.

-6.0x10° -
-4.0x10°

-2.0x10°

Current A

0.0

2.0x10°

4.0x10°

Potential V vs Fc/Fc*

Figure S2. Cyclic voltammograms of 2 in DCM, 0.1 M TBAPF,. Scan rate = 100 mV/s.



-3.0x10° -
-2.0x10° -
-1.0x10° -

0.0 -

Current A

1.0x10°
2.0x10° -

3.0x10° -

40x10°+—m—r+-—vr—+—F+—+—7———— 71—
1.5 10 05 00 05 -1.0 15 -20 -25

Potential V vs Fc/Fc'

Figure S3. Cyclic voltammograms of 1a in DCM, 0.1 M TBAPF. Scan rate = 100 mV/s.
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Figure S4. Cyclic voltammograms of 2a in DCM, 0.1 M TBAPF. Scan rate = 100 mV/s.
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Figure S5. Cyclic voltammograms of 3 in DCM, 0.1 M TBAPF,. Scan rate = 100 mV/s.
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Figure S6. Cyclic voltammograms of 5 in DCM, 0.1 M TBAPF,. Scan rate = 100 mV/s.
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Figure S7. Cyclic voltammograms of 6 in DCM, 0.1 M TBAPF,. Scan rate = 100 mV/s.
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Figure S8. Cyclic voltammograms of 7 in DCM, 0.1 M TBAPF,. Scan rate = 100 mV/s.



Figure S9. Geometry optimization of 1 (DFT; B3LYP).

Figure S10. Geometry optimization of 2 (DFT; B3LYP).
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Figure S11. MO representations after geometry optimization of the frontier MOs for 1; energies in eV.
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Figure S13. Bar graph reporting the calculated oscillator strength and calculated position of the 100
electronic transitions calculated by TDDFT for 1 (bar graph; f = computed oscillator strength). The
black line is generated by assigning an arbitrary thickness of 1000 cm-! to each bar.
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Figure S14. Bar graph reporting the calculated oscillator strength and calculated position of the 100
electronic transitions calculated by TDDFT for 2 (bar graph; f = computed oscillator strength). The
black line is generated by assigning an arbitrary thickness of 1000 cm-! to each bar.

-13 -



0.8

o
N

o
o

——Em. (»_ =490 nm)

1
500

600

Intensity (Normalized)

o
e}

0.4

0.0

Figure S15. Absorption (black), excitation (blue), and emission (red) of 3 and 5 in 2MeTHF at 77 K (up)

1
500

' e
600 700 400 500
Wavelength (nm)

(298K) ﬂ ‘ |

600

1
700 800

and 298 K (down). Wavelengths used for the measurements are indicated on the graph.

-14 -



1.2F 7

=l
o
1

=
N

Intensity (Normalized)

=
o

o
~

0.0 :
400 500 600 700 400 500 600 700

Wavelength (nm)

Figure S16. Absorption (black), excitation (blue), and emission (red) of 6 (up) and 8 (down) in
2MeTHEF at 77 K and 298 K. Wavelengths used for the measurements are indicated on the graph.
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Figure S18. Time-resolved fluorescence measurements (Streak camera; Ao, = 490 nm, pulse width ~100
fs) and kinetic profiles (insets) for 1a in 2MeTHF at 298 K; delay time are given on the graph. Inset
showing kinetic profiles at 540 and 655 nm.
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Figure S19. Time-resolved fluorescence measurements (Streak camera; Ao, = 490 nm, pulse width ~100
fs) and kinetic profiles (insets) for 2a in 2MeTHF at 298 K; delay time are given on the graph.
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Figure S20. Time-resolved fluorescence measurements (Streak camera; Ao, = 490 nm, pulse width ~100
fs) and kinetic profiles (insets) for 1 in 2MeTHF at 298 K; delay time are given on the graph.
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Figure S21. Time-resolved fluorescence measurements (Streak camera; Ao, = 490 nm, pulse width ~100
fs) and kinetic profiles (insets) for 2 in 2MeTHF at 298 K; delay time are given on the graph.
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Figure S23. Transient absorption spectra for 1 in 2MeTHF at 298 K: (1) rise, (2) decay, and (3) decay

associated spectra (DAS) (Aex = 525 nm, pulse width ~90 fs). Delay times at which the spectra collected
and lifetimes are given on graph.
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Figure S24. Transient absorption spectra for 1a in 2MeTHF at 298 K: (1) rise and (2) decay (Aex = 525
nm, pulse width ~90 fs). Delay times at which the spectra collected are given on the graph.
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Figure S25. Transient absorption spectra for 1a (left) and 1 (right) in 2MeTHF at 298 K (Aex = 525 nm,
pulse width ~90 fs). Delay times at which the spectra collected are given on the graph.
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Figure S26. Transient absorption spectra for 1a (left) and 1 (right) in benzonitrile at 298 K (Ax = 525
nm, pulse width ~90 fs). Delay times at which the spectra collected are given on the graph.
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Figure S27. TA spectra (left) and kinetic traces (right) collected for 2 in 2MeTHF at 298 K (A, = 525
nm, pulse width ~90 fs). Delay times for TA spectra and monitoring wavelengths for kinetic profile are
given on graph and the red lines show the best fitted kinetic traces.
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Figure S28. TA spectra (left) and kinetic traces (right) collected for 2 in 2MeTHF at 298 K (A = 525
nm, pulse width ~90 fs). Delay times for TA spectra and monitoring wavelengths for kinetic profile are
given on graph and the red lines show the best fitted kinetic traces.
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Figure S29. TA spectra (left) and kinetic traces (right) collected for 2a in 2MeTHF at 298 K (Ax = 525
nm, pulse width ~90 fs). Delay times for TA spectra and monitoring wavelengths for kinetic profile are
given on graph and the red lines show the best fitted kinetic traces.
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Figure S30. TA spectra (left) and kinetic traces (right) collected for 2 in 2MeTHF at 298 K (A, = 525
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given on graph and the red lines show the best fitted kinetic traces.
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Figure S31. Kinetic traces for 2a and 2 collected in 2MeTHF (left) and BZN (right) at 298 K (A = 525
nm, pulse width ~90 fs). Monitoring wavelength are given on graph and the red lines show the best
fitted kinetic traces.
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Figure S33. Kinetic traces from TA spectra for 1 in 2MeTHF (brown) and BZN (orange) at 298 K (Ax =
525 nm, pulse width ~90 fs). The monitoring wavelength are given on graph and the red line show the
best fitted kinetic traces.
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Figure S35. TA spectra (left) and kinetic traces (right) collected for 2a in 2MeTHF at 298 K (Ax = 525
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Figure S40. '"H NMR spectra of 1d in CDCl;.
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MALDI-TOF spectra of 1b.
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Porphyrin 2

* H=HOMO, L=LUMO, Por = porphyrin, C¢= fullerene, and Ph = Benzene

Table S1: Quantitative atomic contributions for each fragments building 1 and 2.

MOs

H4| H3 |H2|H-1| H | L |L+1|L+2|L+3|L+4

BODIPY| 0 |99.73| 0 0 |012| 0 0 0 [92.0/0.82

Por 0.12| 0 [96.7|0.48|87.3|1.44|0.19]0.42|0.47|89.3

| Ceo 992 0 |037[/99.2|0.78(99.3(99.5(99.4| 0 |0.24

Ph-1 |0.01] 027 | © 0 [141] 0 0 0 | 7.3 |1.56

Ph-2 |0.02| 0 |1.48]0.02]/569| 0 0 0 |022]6.14

Ph-3 |0.66| 0 |1.41]0.33]4.67|0.54(034[0.16| 0 |1.93

MOs

H4 |H3|H2|H-1| H | L |L+1|L+2]| L+3 |L+4| L+5 | L+6
BODIPY [ 99.8| 0 0 [0.12] 0 0 0 0 |92.89|0.16 0 0.01
Por 1 0 0 | 051]76.6(316[0.14(0.19[043| 0 |[79.8| 856 | 4.64
Por 2 0 (98500149 (889 0 0 0 0 |431] 0.03 | 88.3
Ceo 0 0 [99.1]1.00[0.02[993/995(994| 0 |0.06| 544 | 0.08
Ph-1 021 0 0 |1.48]0.05] 0 0 0 | 7.09 137 0 0.1
Ph-2 0 0 [003[560]02] 0 0 0 | 0.02 |561] 225 | 036
Ph-3 0 0 [003[494(188| 0 0 0 0 |545]2080 | 1.07
Ph-4 0 [148] 0 [1.12]558| 0 0 0 0 |160]| 0 5.3
Ph-5 0 0 [003[428[0.16[054(035(0.16| 0 |1.68]| 456 | 0.04
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Table S2: Calculated position, oscillator strength (f) and major contributions of the first 100 singlet-

singlet electronic transitions for 1.

No. Wax(lzllz;lgth Stgzi(;th Major contribs (%)

1 992.8 0.0049 H-3—LUMO (97)

2 878.8 0.0027 HOMO—LUMO (99)

3 789.0 0 H-2—LUMO (99)

4 779.6 0 H-1-LUMO (100)

5 760.2 0.0013 H-3—L+1 (94)

6 707.8 0.0015 H-6—LUMO (22), H-4—LUMO (71)

7 698.8 0.0011 H-5—LUMO (91)

8 697.1 0 HOMO—L+1 (99)

9 687.0 0.0005 H-6—LUMO (70), H-4—LUMO (24)
10 664.6 0.0032 H-3—L+2 (91)

11 639.6 0 H-2—L+1 (98)

12 639.0 0 H-1—L+1 (100)

13 619.6 0.0002 HOMO—L+2 (99)

14 605.6 0 H-4—L+1 (93)

15 579.7 0.0003 H-5—L+1 (80)

16 575.6 0.0003 H-6—L+1 (91)

17 575.5 0 H-1—L+2 (100)

18 573.7 0.0002 H-2—L+2 (98)

19 561.3 0.0038 H-9—LUMO (89)

20 549.7 0.0002 H-7—LUMO (99)

21 537.8 0.0006 H-5—L+2 (84), H-4—>L+2 (12)
22 5353 0.0509 H-2—L+6 (37), HOMO—L+5 (53)
23 5343 0.0071 H-2—L+5 (33), HOMO—L+6 (46)
24 533.6 0.0008 H-5—L+2 (10), H-4—>L+2 (62)
25 509.9 0.0018 H-6—L+2 (79)

26 507.8 0.0091 H-11-LUMO (18), H-3—L+3 (75)
27 507.1 0.0015 H-11-LUMO (75), H-3—L+3 (18)
28 482.8 0.0018 HOMO—L+3 (96)

29 481.5 0 H-8—LUMO (99)

30 480.9 0.0022 H-9—L+1 (86)

31 475.7 0 H-7—L+1 (97)

32 472.8 0.0017 H-18—LUMO (94)

33 470.8 0.0056 HOMO—L+4 (90)

34 457.1 0 H-1—L+3 (100)

35 455.4 0.0008 H-9—L+2 (85)

36 454.4 0.0008 H-2—L+3 (90)

37 451.3 0.0046 H-1-L+4 (16), H-1-L+5 (82)
38 447.9 0 H-10—-LUMO (99)

39 445.1 0.0052 H-15—LUMO (29), H-12—-LUMO (53)
40 443.2 0.0006 H-3—L+4 (16), H-3—-L+5 (67)
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41
42
43
44
45
46

47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67

68
69
70
71
72

73

74
75
76
71
78
79
80
81
82

442.9
442.0
442.0
440.2
439.5
438.9
436.3

433.4
433.3
431.9
430.7
429.8
427.0
426.5
424.0
422.4
420.5
418.2
417.2
415.3
414.9
407.7
404.3
401.6
400.3
399.7
397.8

397.6
396.8
396.6
395.1
393.7
393.2

392.5
392.2
391.9
389.0
387.6
387.4
387.2
386.3
385.3

0.0008
0.0018
0.0017
0.0066
0.0006
0.0029

0.001
0.0001
0.4168
0.0037
0.0037
0.0045
0.0005

0.0062
0.0014
0.0007
0.0027
0.0086
0.0117
0.0032
0.0047
1.6312
0.0402
0.0034
0.0105

0.0023

0.0059
0.0065

0.0003
0.0024
0.0075
0.0284
0.0005
0.1559
0.5466
0.0107

H-1—L+6 (100)

H-3—L+7 (14), H-2—L+4 (74)

H-5—1+3 (11), H-3>L+7 (50), H-2—L+4 (16)
H-3—L+6 (85)
H-19—LUMO (19), H-16—-LUMO (22), H-13—-LUMO (40)
H-7-L+2 (92)
H-19—LUMO (10), H-14—LUMO (37), H-13—-LUMO (31), H-
12—LUMO (14)
H-14—LUMO (55), H-12—LUMO (22)

H-3—L+4 (80), H-3—L+5 (19)

H-8—L+4 (12), H-1-L+4 (72), H-1-L+5 (16)
H-19—LUMO (11), H-15—-LUMO (55), H-13—-LUMO (10)
H-6—1+3 (29), H-4—L+3 (50)

H-6—L+3 (56), H-4—L+3 (28)

H-11-L+1 (96)

H-8—L+1 (99)

H-5—1+3 (67), H-3>L+7 (10), H-3-L+8 (11)
H-19—LUMO (32), H-16—LUMO (45)
HOMO—L+7 (91)

H-20—LUMO (19), H-18—L+1 (25), H-3—L+8 (20)
H-18—L+1 (17), H-17—LUMO (51), H-3—L+8 (14)
H-18—L+1 (33), H-17—LUMO (38)
H-25—LUMO (15), H-20—LUMO (42), H-3—L+8 (10)
H-29—LUMO (10), H-23—-LUMO (11), H-22—LUMO (48)
H-2—L+6 (29), HOMO—L+5 (21), HOMO—L+9 (32)
H-24—LUMO (47), H-11-L+2 (17)
H-24—LUMO (12), H-11-L+2 (78)
H-28—LUMO (15), H-26—LUMO (28), H-25—LUMO (11), H-
20—-LUMO (11)

H-10—L+1 (99)

H-2—1+7 (97)

H-1—L+7 (100)

H-8—L+2 (99)

HOMO->L+8 (91)

H-29—LUMO (18), H-28—LUMO (15), H-27—LUMO (13), H-
26—>LUMO (11)

H-15—L+1 (27), H-12L+1 (53)

H-7—L+4 (87)

H-18—1+2 (52)

H-28—LUMO (23), H-25—LUMO (37)
H-27—LUMO (32), H-13—L+1 (31)

H-1-L+9 (93)

H-27—LUMO (19), H-13—>L+1 (43)

H-2—L+5 (30), HOMO—L+6 (23)

H-14—L+1 (69)
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83 383.6 0.0004  H-16—L+1 (11), H-15—L+1 (29), H-14—L+1 (20), H-12—L+1 (26)

84 383.3 0.0994 H-7—L+5 (41), HOMO—L+9 (34)

85 383.1 0.0353 H-29—LUMO (13), H-22—L+1 (10)

86 380.7 0.0004 H-19—L+1 (22), H-16—L+1 (30), H-15—L+1 (22)
87 380.1 0.0016 H-4—L+4 (21), H-4—L+5 (68)

88 377.6 0.0036 H-4—L+6 (73)

89 377.5 0.0006 H-25-LUMO (12), H-5—L+7 (41), H-4—L1+6 (13)
90 376.3 0.0045 H-4—L+7 (48)

91 375.6 0.0002 H-21—LUMO (95)

92 374.9 0.0004 H-5—L+4 (20), H-5—L+5 (63), H-4—L+4 (11)
93 374.5 0.2013 H-8—L+4 (75), H-1—>L+4 (13)

94 374.5 0.0012 H-4—L+4 (13), H-2—L+8 (78)

95 374.4 0.0025 H-4—L+4 (52), H-4—L+5 (20), H-2—L+8 (18)
96 372.6 0.0011 H-19—L+1 (32), H-17—L+1 (14), H-16—L+1 (27)
97 372.5 0.0001 H-1—L+8 (98)

98 372.3 0.0011 H-5—L+6 (86)

99 372.1 0 H-10—L+2 (98)

100 371.5 0.028 H-7—L+6 (48), H-2—L+9 (23)
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Table S3: Calculated position, oscillator strength (f) and major contributions of the first 100 singlet-

singlet electronic transitions for 2.

No. Wax(lzllz;lgth Stgzi(;th Major contribs (%)

1 992.6 0.0048 H-5—LUMO (13), H-4—LUMO (86)
2 913.0 0.0002 HOMO—LUMO (98)

3 850.8 0.0025 H-2—LUMO (97)

4 796.9 0 H-1-LUMO (100)

5 780.8 0 H-3—LUMO (100)

6 763.3 0 H-5—LUMO (85), H-4—LUMO (12)

7 760.2 0.0013 H-5—L+1 (12), H-4—L+1 (81)

8 720.5 0 HOMO—L+1 (98)

9 707.5 0.0015 H-9—LUMO (23), H-6—LUMO (70)
10 698.4 0.0011 H-8—LUMO (91)

11 686.9 0.0005 H-9—LUMO (70), H-6—LUMO (24)
12 679.9 0 H-2—L+1 (97)

13 664.5 0.0034 H-5—L+2 (12), H-4—>L+2 (79)

14 646.3 0 H-1—L+1 (100)

15 640.1 0 H-3—L+1 (100)

16 639.1 0 HOMO—L+2 (98)

17 622.8 0 H-5—L+1 (87), H-4—L+1 (12)

18 606.0 0.0002 H-6—L+1 (10), H-2—L+2 (87)

19 605.3 0.0001 H-6—L+1 (82), H-2—L+2 (11)
20 580.1 0 H-1—L+2 (100)

21 579.6 0.0004 H-8—L+1 (81)

22 576.4 0 H-3—L+2 (100)

23 575.6 0.0003 H-9—L+1 (90)

24 571.8 0 H-7—LUMO (99)

25 561.2 0.0034 H-12—-LUMO (82)

26 559.9 0.0011 H-5—L+2 (79), H-4—L+2 (13)
27 5443 0.2094 H-2—L+3 (11), H-1-L+8 (28), HOMO—L+7 (46)
28 542.5 0.0004 H-10—-LUMO (98)

29 540.7 0.0163 H-1—-L+7 (40), HOMO—L+8 (58)
30 538.8 0.0544 H-5—L+6 (21), H-2—L+3 (48), HOMO—L+7 (12)
31 537.6 0.001 H-8—L+2 (82), H-6—L+2 (12)
32 536.6 0.0046 H-5—L+3 (35), H-2—>L+6 (45)
33 5335 0.0008 H-8—L+2 (13), H-6—L+2 (70)
34 509.9 0.0022 H-9—L+2 (79)

35 509.7 0.0151 HOMO—L+3 (88)

36 507.5 0.0089 H-20—-LUMO (16), H-4—L+4 (62)
37 506.9 0.0015 H-20—-LUMO (78), H-4—L+4 (13)
38 499.0 0.0002 HOMO—L+4 (54), HOMO—L+6 (43)
39 494.0 0 HOMO—L+4 (44), HOMO—L+6 (54)
40 489.7 0 H-7—L+1 (97)

41 485.2 0 HOMO—L+5 (99)
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42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67

68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85

482.0
480.9
474.3
472.7
472.4
470.1
463.1
462.7
462.6
458.1
457.7
456.7
455.3
454.7
453.1
450.7
450.5
450.2
448.1
447.7
445.6
441.8
439.5
439.4
437.6
437.2

436.3
434.2
434.0
433.8
433.2
432.5
431.1
429.5
429.0
426.8
426.5
426.4
426.4
424.7
424.5
423.1
422.2
418.8

H-11-LUMO (99)
H-12—L+1 (87)

H-2—L+4 (85), H-2—L+6 (11)
H-28—LUMO (91)
H-1—-L+3 (98)

H-10—L+1 (96)

H-3—L+3 (99)

H-1—L+4 (53), H-1—L+6 (47)
H-2—L+5 (98)

H-1—L+4 (47), H-1—L+6 (53)
H-3—L+4 (99)
H-14—LUMO (26), H-13—>LUMO (74)
H-12—L+2 (91)

H-5—L+3 (13), H-4—L+3 (85)
H-14—LUMO (74), H-13—-LUMO (26)
H-1—L+5 (100)

H-7—-L+2 (97)

H-3—L+6 (99)
H-16—LUMO (99)
H-5—L+6 (12), H-4—L+6 (79)
H-5—L+4 (77), H-4—L+4 (11)
H-8—L+4 (15), H-5—L+9 (10), H-4—L+9 (65)
H-17—-LUMO (72), H-15—-LUMO (23)
H-17—LUMO (25), H-15—LUMO (66)
H-2—L+7 (68)
H-30—-LUMO (21), H-27—-LUMO (23), H-26—-LUMO (13), H-
25—LUMO (10), H-2—L+7 (17)
H-18—LUMO (83), H-15—-LUMO (10)
H-19—LUMO (97)
H-10—L+2 (93)

H-4—1+5 (92)
H-30—-LUMO (24), H-26—LUMO (21), H-25—LUMO (38)
H-5—L+5 (92)

H-11-L+5 (13), H-3—>L+5 (87)
H-9—L+4 (29), H-6—L+4 (47)
H-2—L+8 (97)
H-9—L+4 (50), H-6—L+4 (26)
HOMO—L+9 (91)
H-20—L+1 (92)
H-26—LUMO (49), H-25—-LUMO (43)
H-22—LUMO (95)
H-11-L+1 (99)
H-21—-LUMO (96)
H-8—L+4 (62), H-4—L+10 (10)
H-30—LUMO (31), H-27—LUMO (51)
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86 417.0 0.0314 H-32—-LUMO (18), H-28—L+1 (22), H-4—L+10 (22)
87 416.0 2.9505 H-7—L+3 (20), H-5—-L+6 (16), H-2—L+3 (11), H-2—L+7 (10)
88 415.5 0.0003 H-24—LUMO (22), H-23—LUMO (74)
89 415.1 0.1689 H-28—L+1 (47), H-4—>L+10 (14)
90 414.7 0.0009 H-3—L+7 (100)
91 413.6 0.0005 H-29—-LUMO (22), H-24—LUMO (53), H-23—-LUMO (21)
92 412.3 0.0001 H-29—-LUMO (67), H-24—-LUMO (23)
93 411.7 0.0015 H-2—L+9 (94)
94 410.0 0 H-3—L+8 (100)
95 409.7 0.0114 H-5—-L+7 (74), H-4—L+7 (20)
96 407.1 0.0025 H-40—LUMO (15), H-32—-LUMO (41)
97 404.2 0.004 H-36—-LUMO (21), H-5—L+7 (12), H-4—L+7 (50)
98 404.2 0.0022 H-36—-LUMO (34), H-4—L+7 (29)
99 403.2 0 H-5—L+8 (75), H-4—L+8 (25)
100 402.8 0 H-14—L+1 (22), H-13—L+1 (78)
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