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Non-analytical-term or polar correction (-nac) 

Non-metallic crystals are polarized (long-range dipole–dipole interaction) by atomic 

displacements and the generated macroscopic field changes the force constants near the 

Γ point. This effect is reflected in the non-vanishing Born effective charge tensor Z*, taking 

the form of a non-analytical contribution �̃�𝛼𝛽(𝑞 → 0) to the dynamical matrix.1-4 
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where: 𝑚𝑗 – is the mass of the atom in the primitive cell, Ω0 – is the volume of the primitive 

cell, 𝑞 – is the phonon wave-vector, 𝜖𝛼𝛽
∞  – is the high-frequency dielectric tensor, and 𝑍∗ – is 

the Born effective charge tensor, 𝜖𝛼𝛽
∞  and 𝑍∗  may be calculated using density-functional 

perturbation theory3 (DFPT). The calculated phonon dispersion curves including non-

analytical contribution (-nac) are shown in figure S1. For comparison purposes, figure S1 

also contains our results without including the non-analytical contribution (not including -

nac).  One can see from figure S1 that the effects on the phonon dispersion curves due to the 

inclusion of polar correction are negligible.  

 

Figure S1: Phonon dispersion curves for Ba8Ga16Ge30 clathrate. Empty symbols show the 

phonons dispersion curve including the polar correction (-nac). 
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Quasi-harmonic Approximation 

We have employed the so-called quasi-harmonic approximation (QHA) to calculate the 

Grüneisen parameter (𝛾) at different temperatures. For solids, 𝛾 can be estimated using the 

equation 5, 6: 

𝛾 =
𝛼𝑉

𝜅𝑇𝐶𝑉
 , 

(S2) 

where 𝛼 is the thermal expansion coefficient,  V is the volume, 𝜅𝑇  is the isothermal 

compressibility, and 𝐶𝑉 is the heat capacity at constant volume. Equation (S2) is derived for 

an isotropic system, i.e., the Helmholtz free energy depends only on the volume, 

temperature and number of atoms.  

To study the thermal properties of solids it is necessary to take into account the effects of 

atomic thermal vibrations (phonons). The phonon contribution to the Helmholtz free 

energy is given by 7-9:   
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where q and 𝜈 are the wave vector and band index in the Brillouin zone, respectively, 

𝜔𝒒,ν(𝑉) is the phonon frequency at q and 𝜈, T is the temperature, 𝑘𝐵, and ℏ are the 

Boltzmann constant and the reduced Planck constant, respectively.  
Within the QHA it is possible to obtain the Gibbs free energy 𝐺(𝑇, 𝑃) of the system as a 

function of temperature and pressure. 

𝐺(𝑇, 𝑃) = min
𝑉
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where P is the pressure, and U(V) is the total energy from the electronic structure 

calculations at constant volume. Eq. 4 means that, for each couple of T and P variables, the 

function inside the square brackets is to be minimized with respect to the volume. 

The thermal expansion coefficient 𝛼 and 𝜅𝑇 can be derived from: 
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𝑉(𝑃, 𝑇) is determined as a function of pressure and temperature by minimizing 𝐺(𝑇, 𝑃). 

The total heat capacity at constant volume can be calculated as: 

𝐶𝑉 = −𝑇 (
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The heat capacity at a constant pressure Cp can be calculated from the previous quantities 

through thermodynamic relationship and can be computed from, 
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Some quantities obtained in QHA are shown in figures S2 (volume at different temperature) 

and S3 (heat capacity at a constant pressure, Cp). It should be noted that the experimental10 

and calculated values of Cp are in very good agreement. 



 

Figure S2: Equilibrium volume of Ba8Ga16Ge30 clathrate as a function of temperature 
 

 
Figure S3: Heat capacities as a function of temperature. The solid curve denotes the 

calculated Cp of Ba8Ga16Ge30 clathrate. The empty squares depict the experimental values 

reported in ref. 10 
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