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S1 Additional derivations of necessary equations for

the implementation of adiabatic ALMO-EDA

Notations used in the equations presented in Secs. S1.1–S1.3: Greek letters µ, ν, λ, ...: AO
basis indices; lowercase Romans i, j, k, ...: occupied MO indices; a, b, c, ...: virtual MO
indices; p, q, r, ...: generic MO indices; uppercase Romans X, Y , Z, ...: fragment indices for
ALMOs. The equations are derived with spin-orbitals (α or β) so that the resulting equa-
tions can be applied to both restricted and unrestricted calculations. Tensorial notations
are used throughout, i.e., superscripts refer to contravariant indices while subscripts refer to
the covariant ones. Einstein summation convention is applied to contractions between con-
travariant and covariant indices, except for summations over indices on different fragments,
which will be shown explicitly.

S1.1 The derivation of ES
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σ is the metric of all the occupied orbitals: σCkDl = (Co)
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. Therefore,
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The occupied orbitals on fragment A can be parameterized as
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where the σ
−
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AA term enforces on-fragment orthogonality. Thus, we have
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Substituting Eq.(3) into Eq.(2) then using Eq. (5), we get
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which gives Eq.(15) in the main paper.

S1.2 Evaluation of the fragment response gradient

S1.2.1 The z-vector equation

We start from the stationary condition of fragment A’s SCF solution: E∆A
A = 0. Therefore,
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d
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= 0 (7)

which leads to
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We note that the symbol “II” refers to the two-electron AO integrals required for building
J and K, where the part for K is scaled by κ (0 ≤ κ ≤ 1) based on the employed density
functional.

Define zA = −(E∆A
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∆A∆A

A )−1, we have
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where zA can be obtained by solving the following linear equation:

E∆A∆A
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frz (11)
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The LHS of Eq. (11) contains the SCF Hessian of fragment A:

E∆A∆A
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∂2E

∂∆ai∂∆bj

= 2(ǫa − ǫi)δijδab + 4(ia|jb)− 2κ(ij|ab)− 2κ(ib|ja) + 4(fxc)ia,jb (12)

where κ is the proportion of exact exchange in the employed density functional, (fxc)ia,jb is
the second functional derivative δExc

δρ(r)ρ′(r)
expressed in the MO basis. The fragment index

“A” in Eq. (12) are omitted.

The RHS of Eq. (11) is the gradient of the SCF-MI energy with respect to the orbital
rotations on fragment A:
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we can work out the SCF-MI gradient:
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Substitute Eq. (12) and (15) into Eq. (11), the z-vector equation becomes

[(ǫa − ǫi)δijδab + 2(ia|jb)− κ(ij|ab)− κ(ib|ja) + 2(fxc)ia,jb] (zA)
bj

= −σAiAj

[

(σ−1)CT
o F (I − PS)Cv

]Aj

Aa
(16)

which can be solved by iterative methods (e.g., the conjugate gradient method). Again, we
note that the MOs on the LHS of Eq. (16) are on fragment A exclusively.

S1.2.2 From z-vector to fragment response gradient

Now we turn to the terms contracted with zA on the RHS of Eq. (10). Since all the involved
AO or MO indices are on one single fragment exclusively, we omit the fragment index “A”
in the following equations.

Here we write down the Fock matrix as F = h+ II ·P+Vxc, and define

Pz = CvzC
T
o +Coz

TCT
v (17)

which is a symmetric, density-like matrix.
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zai ·
∂2E

∂∆ai∂hµν

· hx
µν = zai ·

∂

∂hµν

(

∂E

∂P λσ

∂P λσ

∂∆ai

)

· hx
µν

= zai ·
∂

∂hµν

(

Fλσ[C
λ
aC

σ
i + Cλ

iC
σ
a]
)

· hx
µν

= δ
µ
λδ

ν
σP

λσ
z hx

µν = Tr[Pzh
x] (18)

• zA · E∆AIIA

A · IIxA:

zai ·
∂2E

∂∆ai∂IIµνλσ
· IIxµνλσ = zai ·

∂

∂IIµνλσ
(Fπω[C

π
aC

ω
i + Cπ

iC
ω
a]) · II

x
µνλσ

= P πω
z δµπδ

ν
ωP

λσIIxµνλσ

= Tr[PzII
xP] (19)

• zA · E∆Ax
xc,A (DFT only):

zai ·
∂2Exc

∂∆ai∂x
= zai ·

∂

∂x

(

∂Exc

∂P µν

∂Pµν

∂∆ai

)

= zai ·
∂

∂x
((Vxc)µν [C

µ
aC

ν
i + C

µ
iC

ν
a])

= (V x
xc)µν · P

µν
z = Tr[PzV

x
xc] (20)
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The derivative of orthogonal MOs with respect to the AO overlap matrix (similar to the
derivation of Eq. (5)):
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Based on Eq. (22), the first term in Eq. (21):
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and the second term:
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Up to this point, we have derived the RHS of Eq.(10). Thus, fragment A’s contribution to
the response gradient can be expressed as

E∆A

frz ·∆x
A = −Tr[Pzh

x]− Tr[PzII
xP]− Tr[PzV

x
xc]

+
1

2
Tr

[

Pz(II+ fxc)[(S
−1)SxP+PSx(S−1)]

]

+
1

2
Tr

[

F[(S−1)SxPz +PzS
x(S−1)]

]

(25)

S1.3 Evaluation of matrix-vector products using finite difference

S1.3.1 z-vector contracted with the implicit first derivative of Vxc

Eq. (23) can be used to evaluate the first term of Eq. (21) when the analytical form of the
second functional derivative (fxc, also known as the implicit first derivative of Vxc) of the
employed density functional is available. For ωB97X-V that is used in this work, we can
compute the entire contribution from the XC part (zA ·E∆ASA

xc ·Sx
A) in a different way using

finite difference.
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zai ·
∂2Exc

∂∆ai∂Sµν

· Sx
µν = zai ·

∂2Exc

∂∆ai∂P πω

∂P πω

∂Sµν
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µν

=

(

zai ·
∂(Vxc)πω
∂∆ai

)(

∂P πω

∂Sµν

· Sx
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)

(26)

Using the finite-difference matrix-vector product technique,

zai ·
∂(Vxc)πω
∂∆ai

=
(Vxc)πω[P+δz]− (Vxc)πω[P−δz]

2δ
(27)

where δ is the step size for finite-difference calculations (in practice we use δ = 10−4). P+δz

is the density matrix constructed upon (occupied) MOs updated as follows (a step forward
of size δz):

C′ = C exp

(

0 −δzT

δz 0

)

(28)

Based on Eq. (27), the evaluation of one matrix-vector product only requires constructing
the Vxc matrix twice (with P+δz and P−δz). And the term left has been worked out before

∂P πω

∂Sµν

· Sx
µν = −

1

2

[

(S−1)πµSx
µνP

νω + P πµSx
µν(S

−1)νω
]

(29)

We note that if we multiply the RHS of Eq. (27) by

∂P πω

∂∆bj
= Cπ

bC
ω
j + Cπ

jC
ω
b (30)

we can get the result for zA · E∆A∆A , which is necessary for iteratively solving the z-vector
equation.

S1.3.2 z-vector contracted with the explicit first derivative of Vxc

The use of Eq. (20) for the evaluation of zA ·E
∆Ax
xc,A requires the analytical form of Vx

xc, which
is the explicit first derivative of the XC matrix. If that is not available for the employed
functional, we can also compute this quantity using finite difference. Analogous to Eq. (27),
we have

zai ·
∂2Exc

∂∆ai∂x
=

Ex
xc[P+δz]− Ex

xc[P−δz]

2δ
(31)

where P+δz has the same definition as above. Ex
xc is the explicit first derivative of the

XC energy, which is related to the change of integration quadrature with respect to the
displacement of nuclei. Based on Eq. (31), it only requires computing Ex

xc twice to obtain
zA · E∆Ax

xc,A .
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S2 Additional results

Table S1: Adiabatic EDA results for the water dimer in linear, bifurcated and aligned
configurations computed at the B3LYP/def2-TZVPPD level of theory. Other details are the
same as in Table I in the main paper.

linear bifurcated aligned
FRZ POL FULL FRZ POL FULL FRZ POL FULL

Adiabatic ∆E -11.18 -2.43 -5.43 -8.15 -1.19 -1.23 -5.63 -0.79 -0.64
Ebind -11.18 -13.61 -19.03 -8.15 -9.34 -10.57 -5.63 -6.42 -7.06

R(O2 · ·Hd) 2.28 2.18 1.96 2.74 2.66 2.57 2.91 2.83 2.76
R(O1 · ·O2) 3.24 3.13 2.92 3.23 3.15 3.06 3.41 3.32 3.25
R(O1–Hd) 0.96 0.96 0.97 0.96 0.96 0.96 0.96 0.96 0.96
α angle (◦) 172.66 172.76 173.04 – – – – – –
β angle (◦) 132.78 132.69 126.36 – – – – – –

ω1 96.86 106.13 122.51 152.26i 182.34i 231.82i 178.96i 212.76i 241.12i
ω2 98.16 116.08 149.78 62.34 71.34 73.56 139.53i 151.04i 164.91i

ω9 3809.58 3803.23 3692.89 3810.99 3810.55 3808.50 3811.64 3811.45 3810.56
ω10 3818.05 3809.78 3804.59 3821.20 3821.71 3817.52 3821.82 3822.92 3822.14
ω11 3910.15 3905.30 3885.02 3908.17 3904.93 3895.86 3910.81 3909.10 3905.88
ω12 3914.97 3908.64 3904.31 3912.17 3911.47 3910.26 3911.55 3910.84 3910.17
ω10 − ω9 8.47 6.55 111.70 10.21 11.16 9.02 10.18 11.47 11.58
ω12 − ω11 4.82 3.34 19.29 4.00 6.54 14.40 0.74 1.74 4.29

Note: compared to the results in the main paper computed with the ωB97X-V functional,
most of the original conclusions still hold. For instance, we still see that the linear configura-
tion is already preferred at the FRZ level, while the red shift of ω9 (symmetric O–H stretch of
the H-donor water) turns out to be an effect of CT. Nevertheless, quantitative differences do
exist between the B3LYP and ωB97X-V results. It is clear that B3LYP underbinds the water
dimer relative to ωB97X-V, and the resulting intermolecular separations for bifurcated and
aligned configurations are significantly larger here. This is most likely because (i) B3LYP
fails to properly describe long-range dispersion and (ii) B3LYP slightly underestimates the
dipole moment of water molecule compared to that given by ωB97X-V.

8



Table S2: Adiabatic EDA results for the water-Cl− complex computed at the B3LYP/def2-
TZVPPD level of theory. Other details are the same as in Table III in the main paper.

FRZ (Cs) POL (Cs) FULL (Cs) FRZ (C2v) POL (C2v) FULL (C2v)

Adiabatic ∆E -36.05 -9.03 -14.43 -35.97 -8.23 -7.36
Ebind -36.05 -45.07 -59.50 -35.97 -44.20 -51.56

R (Cl··O) 3.47 3.38 3.13 3.43 3.33 3.17
R (Cl··Hd) 2.72 2.50 2.15 2.91 2.80 2.63
R (O··Hd) 0.96 0.97 0.99 0.96 0.96 0.97
∠Cl–Hd–O 134.37 151.25 168.57 115.44 115.48 115.70
∠H–O–H 100.39 100.90 101.78 99.77 98.73 96.69

ω1 71.26 135.18 190.65 98.03i 116.43i 328.62i
ω5 3812.42 3748.51 3311.63 3819.60 3807.36 3744.96
ω6 3877.55 3874.99 3869.45 3871.85 3847.54 3753.34
split (ω6 − ω5) 65.13 126.48 557.82 52.25 40.18 8.38

Note: compared to the results by ωB97X-V, there are many similarities such as the magni-
tude of the split between two O–H stretches on the polarized and fully relaxed PESs. The
major difference is that there appears an additional stationary point on the frozen PES
wherein Cl− deviates from the bisector of ∠H–O–H. It is marginally more advantageous (by
only 0.08 kJ/mol) than another stationary structure (C2v) in terms of stabilization energy.
Therefore, the energy minimum on the frozen PES has a broken-symmetry geometry, which
might be related to the lack of long-range dispersion in B3LYP (see Table S3). Besides that,
B3LYP also underbinds the water-Cl− complex for the same reasons as in the water dimer
scenario.
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Table S3: Adiabatic EDA results for the water-Cl− complex computed at the B3LYP-
D3/def2-TZVPPD level of theory. Other details are the same as in Table III in the main
paper.

FRZ (C2v) POL (C2v) FULL (C2v) FULL (Cs)

Adiabatic ∆E -40.25 -8.46 -7.29 -13.63
Ebind -40.25 -48.71 -56.00 -62.34

R (Cl··O) 3.39 3.31 3.20 3.13
R (Cl··Hd) 2.86 2.78 2.66 2.16
R (O··Hd) 0.96 0.96 0.97 0.99
∠Cl–Hd–O 115.30 115.41 115.67 167.31
∠H–O–H 99.61 98.71 96.99 101.51

ω1 149.62 135.83 284.49i 191.94
ω5 3821.39 3808.56 3748.17 3320.91
ω6 3873.10 3849.40 3761.07 3868.97
split (ω6 − ω5) 51.71 40.84 12.90 548.06

Note: adding a D3 correction to B3LYP, the C2v symmetry is restored for the energy min-
imum on the frozen PES. The resulting energetics is also more similar to that given by
ωB97X-V. However, on the polarized PES, the minimum-energy structure retains C2v sym-
metry (verified by frequency calculation), which is different from the previous results given
by ωB97X-V or B3LYP. In our previous calculations, we have noticed that two stationary
points on the polarized PES are of very close stabilization energies, and here their energetic
order is overturned due to the change of functional.
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Table S4: Basis set dependence of the N–B bond length (Å) and the N–B–H angle (◦) at
the optimized structures of NH3-BH3 on the frozen, polarized and fully relaxed PESs with
three triple-ζ basis sets: def2-TZVPP, def2-TZVPPD, aug-cc-pVTZ. Two different models
(“ALMO” and “FERF”) are employed to construct the polarized surface.

Basis set
N–B distance (Å)

FRZ POL (FERF) POL (ALMO) FULL

def2-TZVPP 2.64 2.38 2.35 1.66
def2-TZVPPD 2.76 2.36 2.10 1.66
aug-cc-pVTZ 2.80 2.41 1.77 1.66

The N–B–H angle (◦)
FRZ POL (FERF) POL (ALMO) FULL

def2-TZVPP 92.63 94.71 95.05 104.97
def2-TZVPPD 92.08 95.08 98.38 104.97
aug-cc-pVTZ 91.95 94.60 104.17 104.97

Note: according to the results above, the optimal values forR(N–B) and ∠N–B–H on the fully
relaxed PES are insensitive to the choice of basis set, while their values on the ALMO-based
polarized PES vary significantly with the increase of basis size. The use of the FERF model
largely reduces the basis set sensitivity of the optimal structural parameters on the polarized
surface. The basis set effect on the optimal structure on the frozen PES, on the other hand,
has not been discussed elsewhere. Here we see that the optimal N–B distance on the frozen
PES increases with the size of the employed basis set while ∠N–B–H decreases, which might
be related to the enhancement of Pauli repulsion when fragment electron density becomes
more diffuse. Nevertheless, the changes are smaller than those on the original ALMO-based
polarized PES, and the qualitative interpretation of the results computed on the frozen
surface is not affected.
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