Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supporting Information to

CO₂ adsorption on different organo-modified SBA-15 silicas: effects of content of basic surface groups.

G. Gatti,^{a*} D. Costenaro,^a C. Vittoni,^a G. Paul,^a V. Crocellà,^b E. Mangano,^c S. Brandani,^c S. Bordiga,^b M. Cossi,^a L. Marchese^a and C. Bisio^{a,d*}

^a Dipartimento di Scienze e Innovazione Tecnologica and "Centro interdisciplinare Nano-SiSTeMI", Università del Piemonte Orientale, via T. Michel 11, 15121 Alessandria, Italy;

^b Department of Chemistry, NIS and INSTM Reference Centres, University of Turin, I-10135 Torino, Italy;

^c Scottish Carbon Capture and Storage, School of Engineering, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JL, U.K.;

^d ISTM-CRN Istituto di Scienze e Tecnologie Molecolari, via G. Venezian 21, Milano, Italy.

Results

Fig. S1. TEM measurements of one-pot prepared SBA-15 related sample.

Fig. S2. N₂ adsorption–desorption isotherms at 77 K of functionalized SBA-15 samples prepared by grafting procedure (frame A) and one-pot synthesis (frame B).

Fig. S3. ²⁹Si MAS NMR spectra of SBA-15 (a), A-SBA-15 (b), E-SBA-15 (c) and P-SBA-15 (d) recorded at a MAS rate of 10 kHz. Each curve includes experimental and its deconvoluted spectrum with individual contribution from each ²⁹Si sites.

The result of the reaction between the surface of SBA-15 silica and the silane species was evaluated by solid state NMR spectroscopy. The local environment of Si atoms were determined by ²⁹Si MAS NMR spectra and are shown in Fig. S3, together with the corresponding deconvoluted spectra and their individual components from each silicon site. All samples showed resonances at around -111, -102 and -93 ppm due to Q^4 (Si(OSi)₄), Q^3 (Si(OSi)₃OH) and Q^2 (Si(OSi)₂(OH)₂) species, respectively. Figure S3 (a) shows the ²⁹Si MAS NMR spectra of pristine SBA-15, where both Q³ and Q⁴ sites are partially resolved. While similar resolution was also observed in A-SBA-15, broader contributions were found in E-SBA-15 and P-SBA-15. Grafted SBA-15 samples A-SBA-15, E-SBA-15 and P-SBA-15 show resonances at -66 and -58 ppm due to T³ and T² Si sites, respectively. A successful grafting process has been confirmed by the presence of T³ (Si(OSi)₃C) and T² (Si(OSi)₂(OH)C) silicon sites in organically modified SBA-15. ¹ Standard CPMAS conditions were used to acquire the ¹³C CPMAS NMR spectra of organically modified SBA-15 at room temperature in order to confirm the surface functionalization as well as to distinguish ¹³C sites. Figure S3 displays ¹³C CPMAS spectra of pristine A-SBA-15, E-SBA-15 and P-SBA-15 recorded with a MAS rate of 10kHz and a cross polarization contact time of 2 ms. Well-defined resonances at around 8, 24 and 42 ppm for carbon atoms C1, C2 and C3, respectively are visible in the spectra of pristine A-SBA-15. Equally, similar carbons in E-SBA-15 and P-SBA-15 exhibit resonance at around 9 and 22 ppm. However, carbon atoms bind to NH group display a separate resonance at around 50 ppm in E-SBA-15 and P-SBA-15 besides the resonance at 40 ppm for NH₂ bound carbon. Therefore, it can be concluded that, organic surface functionalization in SBA-15 by grafting has been successful in all the three systems.

Fig. S4. ¹³C CPMAS NMR spectra of pristine A-SBA-15 (a), E-SBA-15 (b) and P-SBA-15 (c). A cross polarization contact time of 2 ms and a MAS rate of 10 kHz were used in all the experiments.

Fig. S5. FT-IR spectra of functionalized SBA-15 samples prepared by one-pot procedure (frame A). Enlargement of the FT-IR spectra in the 1800-1300 cm⁻¹ range (frame B). Spectra were recorded outgassing the samples at r.t. for 30 minutes.

Fig. S6. Frame A) Quantitative isotherms related to the adsorption at 30° C of CO₂ at low equilibrium pressures on A-SBA-15 (circle), E-SBA-15 (square) and P-SBA-15 (triangle) samples. Frame B) Differential molar adsorption heats related to the adsorption of CO₂ at low coverages on grafted SBA-15 samples. The dashed horizontal line represents the standard molar enthalpy of liquefaction of CO₂ at 298K.

References

1 S.H. Kim, O.C. Han, J.K. Kim, K.H. Lee, Bull. Korean Chem. Soc., 2011, 32 (10), 3644.