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S1. Simulation Methods 

Electronic structure calculations were performed within the framework of DFT, as implemented 

in the Vienna ab initio simulation program (VASP),1-4 a plane-wave pseudopotential package. The 

exchange and correlation energies were calculated using the Perdew, Burke, and Ernzerhof (PBE) 

functional within the generalized gradient approximation (GGA). 5, 6 The PBE-D3 method was 

employed to correct van der Waals interaction of water-water and water-Pt.7 

Our Calculations used a 3-layer Pt(111) metal slab, based on a 4 × 4 periodic cell with the bottom 

two layers fixed. The water slab contains 48 water molecules placed on the Pt(111) surface to 

simulate the water/Cu(111) interface explicitly. The thickness of the water slab is ~15 Å, 

corresponding to 5 layers of water. The simulation box is 50 Å along the z-axis with a vacuum of 

30 Å. The lateral dimensions of the slab were fixed using the experiment lattice constant of 3.615 

Å. A plane-wave cutoff energy of 400 eV was used. The First order Methfessel-Paxton scheme 

was used with a smearing width of 0.2 eV. Dipole corrections were applied along the z axis. The 

Energy minimization criterion was that forces on free atoms are < 0.01 eV/Å. The charges on 

species were derived using a Bader analysis.8, 9 

A 1.2 fs time step with utilized in the QM-based Reactive Molecular Dynamics (RMD) simulations 

with the hydrogen mass set to 2 amu. These RMD simulations used only the gamma point of the 

Brillouin zone with no consideration of symmetry. The velocities were rescaled every 20 MD steps 

to readjust to the target temperature to equilibrium. We employed a Nose-Hoover thermostat for 

the free energy calculations with a temperature damping parameter of 100 fs. 

To initialize the positions of the solvent atoms, we carried out ReaxFF RMD calculations at 298K 

for 2ns.10 Then we minimized the final structure with QM, re-initialized the velocities at 50K, 

heated to 298K over five ps and then metadynamics for 2 to 10 ps. 

S2. Metadynamics 

The metadynamics Hamiltonian 𝐻̃(𝑝, 𝑞, 𝑡) is written as:11 

𝐻̃(𝑝, 𝑞, 𝑡) = 𝐻(𝑝, 𝑞) + 𝑉̃(𝑡, 𝜉),                                               (S1) 

where H(p,q) is the Hamiltonian for the original (unbiased) system, 𝜉 is the collective variable 

(CV), and 𝑉̃(𝑡, 𝜉) is the time-dependent bias potential. The bias term is defined as a sum of 

Gaussian hills with height h and width 𝛚: 
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𝑉̃(𝑡, 𝜉) = ℎ ∑ exp[−
|𝜉(𝑡)−𝜉(𝑖 ⋅𝑡𝐺)|

2

2𝜔
] ,

|𝑡/𝑡𝐺|
𝑖=1                                    (S2) 

The biased potential is related to the free energy via: 

𝐴(𝜉) = lim
𝑡→∞

𝑉̃(𝑡, 𝜉) + 𝑐𝑜𝑛𝑠𝑡                                         (S3) 

In this work we used: 

• h = 0.08 eV  

• 𝜔 = 0.18 Å  

• tG = 20 time step  

S3. Constrained Molecular dynamics12 

The correct (unbiased) average for a quantity 𝛼(𝜉) of constrained (biased) molecular 

dynamics can be obtained from: 

𝛼(𝜉) =

⟨|𝒁|−
1
2𝛼(𝜉∗)⟩

𝜉∗

⟨|𝒁|−
1
2⟩

𝜉∗

                                                          (S4) 

where Z is a mass metric tensor defined as: 

𝒁𝛼,𝛽 = ∑ 𝑚𝑖
−1𝛻𝑖𝜉𝛼 ⋅ 𝛻𝑖𝜉𝛽

3𝑁
𝑖=1                                                  (S5) 

the free energy gradient can be computed using the equation:  

(
𝜕𝐴

𝜕𝜉𝑘
)

𝜉∗
=

1

⟨|𝒁|−
1
2⟩

𝜉∗

⟨|𝒁|−
1

2 [𝜆𝑘 +
𝑘𝐵𝑇

2|𝒁|
∑ (𝒁−1)𝑘𝑗

∑ 𝑚𝑖
−1𝛻𝑖𝜉𝑗 ⋅ 𝛻𝑖|𝒁|3𝑁

𝑖=1
𝑟
𝑗=1 ]⟩

𝜉∗
    (S6) 

The free-energy difference between states (1) and (2) was computed by integrating the free-

energy gradients over a connecting path: 

Δ𝐴1→2 = ∫ (
𝜕𝐴

𝜕𝜉
)

𝜉
⋅ 𝑑𝜉

𝜉(2)

𝜉(1)
                                                 (S7) 

First, we employed slow-growth to generate the reaction path. Then we applied an 

increment of 0.0008 Å/step in the collective variables to drive the chemical reactions. We 

found that simulation times of 2 to 10 ps were necessary to complete the reaction, depending 

on the length of reaction pathways. From the reactive trajectories, we selected 20 windows (21 

points) for thermodynamic integration calculations. Simulations of 2.4 ps were carried out at 

each window to produce the potential of mean force (PMF). Energy profiles were obtained by 

integrating the PMF. 
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S4. Reactive trajectories and free energy contours 

 

 
Fig. S1. Snap shots from the QM RμD trajectories showing the dissociation of O2 (reaction 1a, 

𝑂2
∗ → 2 ∙ 𝑂∗ , with ΔG‡ = 0.40 eV) followed by O* hydration (reaction 2c,

2H O( )

2O* H O* *OH *OH
aq

     with ΔG‡ = 0.25 eV).  

(a) t = 0 ps. O2 on the bridge site;  

(b) t = 0.43 ps. Oa
* on top site and Ob

* on HCP site  

(c) t = 0.48 ps. intermediate state of Ob
* hydration  

(d) t = 0.78 ps. Oa
* on FCC site, and the newly formed *OH on top site.  

The colors of atoms are Pt in silver, H in yellow (for viewing convenience), and O in red.  
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Fig. S2. Two-dimensional free energy contours for QM RμD of O2 dissociation (

2*O O* O*  , ΔG‡ = 0.40 eV) along with oxygen hydration by surface water (

2H O( )

2O* H O* *OH *OH
aq

   , ΔG‡ = 0.25 eV). The two collective variables are the O-O 

distance (rO-O) and O-H distance (rO-H). We conclude that there is no concerted coupling, 

however, in the dynamics, the system goes over the second barrier in 0.30 ps, suggested that the 

energy released from the first step promotes the second step. 

 

To determine if this 2c O* hydrolysis aids the decomposition of O2 in step 1a, we carried out a 

two-dimensional free energy calculation by extending the CV to two dimensions with one being 

the coordination number of O [N(O)] and the other the coordination number of H [N(H)] (taking 

the central O as reference). The calculated 2D free energy surface is shown in Fig. S2. There is 

essentially no correlation between the two CVs, indicating that these reactions are two separate 

events. O2 decomposition (1a) has a higher energy barrier of 0.40 eV, while O* hydration (2c) has 

a lower energy barrier, 0.25 eV. This second hydrolysis step was observed during the timescale of 

the O2 dissociation, suggesting that some of the reaction energy of the 1st step is used to drive the 

second step, rather than being dissipated.  
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Fig. S3. Reactive trajectories from QM RμD showing the *OOH formation from H*, reaction 1b 
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Fig. S4. Two-dimensional free energy contours for *OOH dissociation. The two collective 

variables (CVs) are O-O distance [r(O-O)] and the dihedral angle of Pt-O-O-H. The predicted 

free energy barrier is ΔG‡ =  0.38 eV, which is ΔG‡ = 0.32 eV lower than that derived by using 

only one CV, which demonstrates that selecting the CV properly is essential for complex 

reactions.  

 

Assuming the O-O distance as the CV for *OOH decomposition, we found a 0.70 eV 

dissociation energy barrier for *OOH direct decomposition (1b). This is unreasonable since the 

direct O2 decomposition has an energy barrier of 0.40 eV. In examining these reactions, we found 

that the Pt-O-O-H dihedral angle rotates significantly during the reaction trajectories. Therefore, 

we extended the CV to be two-dimensional including the dihedral angle of Pt-O-O-H as a 2nd CV. 

This 2D metadynamics simulation decreases free energy barrier to 0.38 eV, leading to the 2D free 

energy contours shown in Fig S4. These results demonstrate that selecting the CV properly is 

essential for complex reactions. 
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Fig. S5. Two-dimensional free energy contours for HOO* reduction. The two collective 

variables (CVs) are Norm of HB chains ||rOHn|| and a dihedral angle of Pt-O-O-H. The predicted 

free energy barrier is 0.14 eV.  
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Fig. S6. Reactive trajectories from meta-dynamics showing the *OOH reduction (reaction 1c’) 

via an ER mechanism. This leads to a free energy barrier of 0.14 eV at U=0.6 V 

A B C
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Fig. S7. Reactive trajectories from meta-dynamics showing the water formation (LH) from OH* 

+H* with a free energy barrier of 0.54±0.08 eV (reaction 3a). For comparison, we also carried 

out a simulation with a 4-layer slab with the bottom two layers fixed for this reaction of the water 

formation (LH) from OH* +H*. For comparison, we also carried out a simulation with a 4-layer 

slab with the bottom two layers fixed for this reaction. The free energy barrier obtained from this 

4-layer slab is 0.59 eV, which is consistent with that obtained from 3-layer slab calculation (0.54 

eV) considering the errors in the calculation (0.08 eV). Therefore, the 3-layer models were used 

in this work for the sake of efficiency.  
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S5. Constant potential corrections 

Electrochemical reaction energetics at constant potential were determined using the correction 

method proposed by Chan and Norskov:13 

Δ𝐸𝜙1−𝜙2
=  𝐸(𝜙1) − 𝐸(𝜙2) =

Δ𝑞 ⋅ΔΦ

2
                                           (S8) 

However, for plane wave calculations the atomic charges are ambiguous. Instead, we use the 

capacitance (C) defined as: 

𝐶 =
Δ𝑞

Δϕ
                                                                     (S9) 

To replace change (q), in S8, which can be calculated by varying the number of total electrons. 

This leads to the ΔE in S10: 

Δ𝐸 =
𝐶⋅ΔΦ2

2
                                                               (S10) 

 

The resultant extrapolated energy differences (ΔE) are shown in Table S1. These corrections 

were applied only to the proton transfer reactions.  

 

Table S1. Corrections to obtain the free energy barriers at a constant potential. Tabulated work 

function, Φ (in V), C (in e/V), and the extrapolated ΔE (in eV) at Φt0.  

Step Reactions 
Φ (V) 

C(e/V) ΔE(eV) 
t0 tTS 

1a O2* dissociation 5.3(4) 5.2(6) 2.0 0.02 

1b’’ HOO* reduction 4.8(6) 4.7(3) 1.8 0.03 

1b’’’ HOOH formation 4.3(7) 4.4(4) 2.1 -0.01 

2a O* hydration 5.3(4) 5.3(5) 1.9 0.00 

3a water formation 5.5(5) 5.4(4) 1.8 0.01 

3b Water formation  

(ER @ 0.6 V) 
5.0(7) 5.2 (6) 1.8 -0.04 

3b Water formation  

(ER @ 1.1 V) 
5.5(4) 5.7(5) 2.1 -0.04 
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