Supporting information – The role of tachysterol in vitamin D photosynthesis – A non-adiabatic molecular dynamics study

Cecilia Cisneros, Travis Thompson, Noel Baluyot, Adam Smith, and Enrico

Tapavicza*

Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840

E-mail: enrico.tapavicza@csulb.edu

^{*}To whom correspondence should be addressed

Table 1: Cartesian coordinates of the ground state equilibrium structures of the rotamers optimized by PBE/SVP with the resolution of identity.

1	tEt	tEc	$_{ m cEc}$	cEt
С	2.3340679 1.4027812 -3.9987101	2.4214169 0.6730639 -4.5658246	-8.1816339 -1.9612960 2.5500567	-9.9460430 -3.8778190 4.0931829
С	3.7227251 1.6499350 -3.4013562	3.4915531 -0.2991711 -4.0593459	-9.4216275 -2.1940631 3.4182460	-10.8080078 -2.6366456 3.8045313
С	4.0695780 0.5202828 -2.4228974	3.9067015 0.0721891 -2.6362118	-9.0529648 -3.0028527 4.6524622	-10.2047845 -1.3408897 4.4014373
С	3.0625076 0.5170317 -1.2663323	2.6922176 -0.0067945 -1.7025063	-8.0202454 -2.2306931 5.4783671	-8.7098033 -1.5149674 4.7392267
С	1.6071944 0.5553322 -1.7209405	1.4186219 0.6306874 -2.2421485	-6.8346282 -1.7040156 4.6706867	-7.9517691 -2.4590676 3.8126941
С	0.5850060 0.1917551 -0.7425759	0.3269539 0.8350312 -1.2955019	-5.6797753 -1.3550938 5.5024813	-6.6297344 - 2.0167280 3.3641185
С	0.8113823 -0.1210543 0.5712485	0.3078430 0.4475667 0.0166663	-4.3478010 -1.3578515 5.1905084	-6.0283855 -2.3091675 2.1711540
С	-0.1445833 - 0.4866788 1.6125127	$-0.7914523 \ 0.6511506 \ 0.9667272$	-3.2291454 -1.0087136 6.0764912	-4.7136356 -1.9161603 1.6686445
С	0.3597054 -0.8510448 2.8353907	$-1.7077173 \ 1.6586705 \ 0.8616737$	-3.3714308 -0.3939324 7.2884780	-4.3261701 -2.4194079 0.4526145
С	1.2828945 0.9538884 -3.0006246	1.3108033 0.9624912 -3.5743859	-6.9324654 -1.5490387 3.3086574	-8.5354183 -3.6767882 3.5714437
С	-0.4408377 -1.2763194 4.0351979	-2.8850954 1.8599205 1.7835931	-2.2452453 -0.0755301 8.2390213	-3.0093089 -2.1726648 -0.2312712
С	-1.9493048 -1.4387328 3.7576607	$-2.9087234 \ 0.9241394 \ 3.0150457$	-0.8295205 -0.3286331 7.6723599	-1.9895917 -1.4050787 0.6346941
С	-2.4351544 -0.3774477 2.7597003	-2.3513583 -0.4650741 2.6650129	-0.8138955 -1.5597028 6.7524519	-2.6962011 -0.3433262 1.4896082
С	-1.6565652 -0.5756624 1.4216099	-0.8893252 -0.2698644 2.1741034	-1.8132711 -1.2897383 5.5934993	-3.7013314 -1.0697127 2.4360498
С	-2.4425158 0.3058451 0.4201838	-0.3139298 -1.7004636 2.1385192	-1.5154346 -2.4126134 4.5794054	$-4.1018696 \ 0.0368141 \ 3.4428158$
\mathbf{C}	$-3.9173612 \ 0.2300127 \ 0.9181057$	-1.0254999 -2.4144401 3.3277620	0.0218344 - 2.6343714 4.7167866	$-2.8188522 \ 0.9124157 \ 3.5781407$
С	-3.8953621 -0.5600852 2.2586854	-2.1026720 -1.4215833 3.8675469	0.4921088 -1.7773743 5.9339407	$-1.7964164 \ 0.3682789 \ 2.5386162$
\mathbf{C}	$-2.2280998 \ 1.0378703 \ 3.3436263$	-3.2389467 -1.1417400 1.5979263	-1.1809360 -2.8293392 7.5514830	-3.4023713 0.6885291 0.5815868
\mathbf{C}	-0.1202863 1.0098298 -3.5542029	0.1133527 1.6291527 -4.2048208	-5.8365241 -0.9798572 2.4424534	-7.8941923 -4.8424304 2.8687887
\mathbf{C}	-5.0179545 -0.1831341 3.2273622	-3.3260460 -2.1008644 4.4856262	1.6972419 -2.3538059 6.6787828	$-0.8118218 \ 1.4167266 \ 2.0183014$
0	4.1124369 -0.7474848 -3.0793264	4.9980790 -0.6997999 -2.1500461	-10.2416153 -3.2599734 5.3910064	-10.3132561 -0.2398051 3.4996594
Η	-4.9487551 -0.7548413 4.1799099	-3.8309446 -2.7802378 3.7634462	1.9845386 - 1.7209069 7.5486989	-0.1891720 1.8169465 2.8494587
Η	-6.0132893 - 0.4036365 2.7806242	-4.0760253 -1.3562808 4.8348955	2.5829911 -2.4142189 6.0073643	$-1.3352066 \ 2.2812190 \ 1.5528023$
Η	3.1790681 -1.0218084 -3.2212526	4.6933995 -1.6334602 -2.1120769	-9.9788570 -3.7259730 6.2136751	-11.2563412 -0.1704382 3.2372729
Η	3.2447241 - 0.4007693 - 0.6644279	2.4973390 -1.0860631 -1.4770064	-8.5497648 -1.3820946 5.9767957	-8.2533224 -0.5032452 4.7494721
Η	$3.2655077 \ 1.3758556 \ -0.5836899$	2.9658182 0.4530813 -0.7274123	-7.6436841 -2.8830495 6.3022048	-8.6464768 - 1.9078717 5.7819387
Η	$5.0945151 \ 0.66666668 \ -2.0178225$	4.2904290 1.1179458 -2.6427132	-8.5871047 -3.9659334 4.3125265	-10.7353469 -1.0947502 5.3568221
Н	4.4862322 1.7066652 -4.2073153	3.0867669 - 1.3401412 - 4.0528285	-9.8508135 -1.2222841 3.7536407	-10.8419082 -2.4960988 2.7009970
Н	$3.7387671 \ 2.6204796 \ -2.8547364$	4.3822352 -0.2965323 -4.7248394	-10.2161186 -2.7214551 2.8466594	-11.8521620 -2.7895304 4.1596951
Н	$1.9676282 \ 2.3184044 \ -4.5204393$	2.9008177 1.6421007 -4.8561771	-7.9488469 - 2.8884092 1.9666748	-9.9330859 -4.0780390 5.1951502
Н	$2.4074258 \ 0.6344022 \ -4.8092818$	$1.9703705 \ 0.2902462 \ -5.5117251$	-8.4054193 -1.1919806 1.7754338	-10.4060901 -4.7772834 3.6278270
Н	$-0.4526008 \ 0.1984044 \ -1.1007436$	-0.5874791 1.3102405 -1.6889646	-5.9461608 -1.1234131 6.5535233	-6.1153550 -1.3326985 4.0598592
Н	1.8573854 - 0.1180875 0.9284159	1.1758282 - 0.1062025 0.4167671	-4.0502888 -1.7027766 4.1874309	-6.6042520 -2.9231954 1.4547791
Н	-0.1337904 0.6446818 -4.6070254	$0.4436495 \ 2.4580580 \ -4.8732699$	-5.2025048 -0.2505421 2.9913149	-8.1560602 -5.7943672 3.3869695
Н	-0.4905033 2.0626685 -3.5888179	-0.6097343 2.0525713 -3.4802412	-6.2664080 -0.4711683 1.5506471	-6.7879600 - 4.7567649 2.8311536
Н	-0.8628969 0.4152952 -2.9850008	-0.4419462 0.9122811 -4.8561800	-5.1561729 -1.7747951 2.0522916	-8.2572860 -4.9536814 1.8183212
H	1.4571407 -0.8191605 2.9736227	-1.6095135 2.3860359 0.0347279	-4.3841182 -0.1212402 7.6390078	-5.0428241 -3.0605458 -0.0955589
H	-0.0214067 -2.2253009 4.4457943	-2.9229717 2.9238735 2.1176226	-2.3318088 0.9828978 8.5818870	-2.5745977 -3.1449206 -0.5647136
H	-0.2765591 -0.5288268 4.8511808	-3.8212167 1.7269915 1.1854535	-2.3968567 -0.6763739 9.1707844	-3.2021251 -1.6174656 -1.1833881
H	-2.1438388 -2.4471992 3.3240433	-2.2809048 1.3611197 3.8256605	-0.5017188 0.5569240 7.0802592	-1.4653349 -2.1160924 1.3147489
H	-2.5188869 -1.3872441 4.7131830		-0.1039007 -0.4374713 8.5110077	-1.2078070 -0.9483082 -0.0142167
H			-1.4565450 -0.3455907 5.1108811	
н		-3.201/58/ -0.596/050 0.6309/58	-0.5205928 -2.9332210 8.4408865	
H	-2.0923384 1.1149090 4.3515627	-4.2993030 -1.10/0122 1.9337207		-4.2498132 0.2319442 0.0277378
H II	-2.00001/2 1.82/015/ 2./091333	-2.9312320 -2.1900007 1.3963992	-2.2320349 -2.7972119 7.9096880	
п	-4.0047709 -1.0440814 2.0209180	-1.0201/00 -0.7988301 4.0017308	0.1043003 -0.1112090 3.3300141	-1.2012212 -0.4370019 3.0307000
п	4 5816630 0 2636222 0 1767155	-1.3032301 -3.3007007 2.3924888	0.2004000 -0.7090020 4.0808908	-3.0434394 1.9822320 3.3729740
н	2 0653333 1 3505678 0 4947464	0.5481937 9.1053940.1.1704579	2 0810041 2 3354076 4 8250457	4 9611271 0 6316731 3 9654946
н		-0.5461257 - 2.1955240 1.1704575 0 7018074 1 7115987 2 9495042	1 8073756 9 1356048 3 5440027	4 4053777 0 3818007 4 4220546
H	-5.0008681.0.9008297.3.4771056	-3 0326956 -2 7155137 5 3660474	1 4982497 -3 3817242 7 0551282	-0.1173819.0.9896335.1.2600142
	0.0000000000000000000000000000000000000	5.5525000 20100000000000000000000000000000	1.1.0.01101 0.0011212 1.0001202	

Figure 1: CC2 $S_1 \leftarrow S_0$ excitation energy (left) and oscillator strength (right) as a function the dihedral angles ϕ_1 and ϕ_2 .

Figure 2: Comparison between CC2 and TDPBE0 potential energy surface along [1,5]signatropic hydrogen shift reaction. The trajectory was generated using TDDFT-SH in the Tamm-Dancoff approximation employing the PBE0 exchange-correlation functional. CC2 ground and excited state energies were computed every 5 time steps of the simulation.

Figure 3: Comparison between CC2 and TDPBE0 potential energy surface along doublebond isomerization. The trajectory was generated using TDDFT-SH in the Tamm-Dancoff approximation employing the PBE0 exchange-correlation functional. CC2 ground and excited state energies were computed every 5 time steps of the simulation.

Figure 4: Comparison between CC2 and TDPBE0 potential energy surface along un unreactive trajectory. The trajectory was generated using TDDFT-SH in the Tamm-Dancoff approximation employing the PBE0 exchange-correlation functional. CC2 ground and excited state energies were computed every 5 time steps of the simulation.

Figure 5: Evolution of the dihedral angles ϕ_1 and ϕ_2 during excited state dynamics for the different rotamers tEc, cEt, tEt, cEc (order from top to bottom). Each plot shows the evolution for a time interval of 500 fs and each line shows the evolution of the first 2 ps for the given rotamer.